Finite element methods for 3D interface problems on local anisotropic hybrid meshes

被引:0
|
作者
Hu, Jun [1 ,2 ,3 ]
Wang, Hua [4 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Chongqing Res Inst Big Data, Chongqing 401332, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
3D interface problem; Unfitted mesh; Anisotropic element; Interpolation error estimate;
D O I
10.1007/s10092-024-00633-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new finite element method designed to address three-dimensional interface problems. This method employs a quasi-uniform, unfitted mesh as the foundation for constructing the grid, which incorporates anisotropic tetrahedral, pyramidal, and prism elements near the interface. We conduct a rigorous analysis of the optimal approximation capabilities of anisotropic elements, with a specific focus on their linear convergence rates in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm, excluding a logarithmic factor related to the intersection of the interface and element edges. Additionally, we thoroughly investigate errors arising from transitioning between the continuous and discretized interfaces. After applying suitable approximations to the discretized interface, this logarithmic factor is expressed as |lnh|1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\ln h|<^>{1/2}$$\end{document}. The convergence rate in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm is quantified as O(|logh|1/2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\log h|<^>{1/2} h)$$\end{document}. Numerical experiments are presented to corroborate these theoretical results.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] The generation of arbitrary order curved meshes for 3D finite element analysis
    Xie, Zhong Q.
    Sevilla, Ruben
    Hassan, Oubay
    Morgan, Kenneth
    COMPUTATIONAL MECHANICS, 2013, 51 (03) : 361 - 374
  • [32] The generation of arbitrary order curved meshes for 3D finite element analysis
    Zhong Q. Xie
    Ruben Sevilla
    Oubay Hassan
    Kenneth Morgan
    Computational Mechanics, 2013, 51 : 361 - 374
  • [33] ROBUST AND EFFICIENT MIXED HYBRID DISCONTINUOUS FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Zhu, Jiang
    Vargas Poblete, Hector Andres
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 767 - 788
  • [34] LOCAL FLUX RECONSTRUCTIONS FOR STANDARD FINITE ELEMENT METHODS ON TRIANGULAR MESHES
    Becker, Roland
    Capatina, Daniela
    Luce, Robert
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2684 - 2706
  • [35] LOCAL MODIFICATION OF MESHES FOR ADAPTIVE AND OR MULTIGRID FINITE-ELEMENT METHODS
    RIVARA, MC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (01) : 79 - 89
  • [36] 3D printing of porcelain: finite element simulation of anisotropic sintering
    Charles Manière
    Christelle Harnois
    Sylvain Marinel
    The International Journal of Advanced Manufacturing Technology, 2021, 116 : 3263 - 3275
  • [37] Unstructured finite element method for a 3D anisotropic bidomain model
    Bourgault, Y
    Ethier, A
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1634 - 1637
  • [38] 3D printing of porcelain: finite element simulation of anisotropic sintering
    Maniere, Charles
    Harnois, Christelle
    Marinel, Sylvain
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 116 (9-10): : 3263 - 3275
  • [39] Combining Finite Element and Analytical methods to Contact Problems of 3D Structure on Soft Foundation
    Su, Chao
    Zhang, Heng
    Hu, Shaopei
    Bai, Jiawei
    Dai, Jianjian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [40] Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics
    Adams, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 55 (05) : 519 - 534