Finite element methods for 3D interface problems on local anisotropic hybrid meshes

被引:0
|
作者
Hu, Jun [1 ,2 ,3 ]
Wang, Hua [4 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Chongqing Res Inst Big Data, Chongqing 401332, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
3D interface problem; Unfitted mesh; Anisotropic element; Interpolation error estimate;
D O I
10.1007/s10092-024-00633-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new finite element method designed to address three-dimensional interface problems. This method employs a quasi-uniform, unfitted mesh as the foundation for constructing the grid, which incorporates anisotropic tetrahedral, pyramidal, and prism elements near the interface. We conduct a rigorous analysis of the optimal approximation capabilities of anisotropic elements, with a specific focus on their linear convergence rates in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm, excluding a logarithmic factor related to the intersection of the interface and element edges. Additionally, we thoroughly investigate errors arising from transitioning between the continuous and discretized interfaces. After applying suitable approximations to the discretized interface, this logarithmic factor is expressed as |lnh|1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\ln h|<^>{1/2}$$\end{document}. The convergence rate in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm is quantified as O(|logh|1/2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\log h|<^>{1/2} h)$$\end{document}. Numerical experiments are presented to corroborate these theoretical results.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Some mixed finite element methods on anisotropic meshes
    Farhloul, M
    Nicaise, S
    Paquet, L
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (05): : 907 - 920
  • [2] 3D hybrid finite element enthalpy for anisotropic thermal conduction analysis
    Erchiqui, F.
    Annasabi, Z.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 136 : 1250 - 1264
  • [3] Finite element methods for the solution of 3D eddy current problems
    Albanese, R
    Rubinacci, G
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 102, 1998, 102 : 1 - 86
  • [4] On increasing the order and density of 3D finite element meshes
    Lee, CK
    Wong, SM
    Lie, ST
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (01): : 55 - 68
  • [5] Condition numbers of finite element methods on a class of anisotropic meshes
    Li, Hengguang
    Lu, Xun
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 22 - 43
  • [6] A difference finite element method based on nonconforming finite element methods for 3D elliptic problems
    Song, Jianjian
    Sheen, Dongwoo
    Feng, Xinlong
    He, Yinnian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2025, 51 (01)
  • [7] High order interface-penalty finite element methods for elasticity interface in 3D
    Zhang, Xiaodi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 : 161 - 170
  • [8] A penalty-based interface technology for coupling independently modeled 3D finite element meshes
    Pantano, Antonio
    Averill, Ronald C.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (04) : 271 - 286
  • [9] Discrete boundary element methods on general meshes in 3D
    Graham, IG
    Hackbusch, W
    Sauter, SA
    NUMERISCHE MATHEMATIK, 2000, 86 (01) : 103 - 137
  • [10] HYBRID LINEAR AND QUADRATIC FINITE ELEMENT MODELS FOR 3D HELMHOLTZ PROBLEMS
    Q.H.Zhang
    K.Y.Sze
    ActaMechanicaSolidaSinica, 2013, 26 (06) : 603 - 618