On explicit formulas of hyperbolic tangent matrix function

被引:0
作者
Laarichi, Yassine [1 ]
Ftouhi, Mostafa [1 ]
Gretete, Driss [2 ]
机构
[1] Univ Ibn Tofail, Dept Math, Kenitra, Morocco
[2] Ibn Tofail Univ, Natl Sch Appl Sci, Engn Sci Lab, Kenitra, Morocco
关键词
Matrix functions; Hyperbolic tangent matrix function; Explicit formulas; Hermite; matrix polynomials; Fibonacci-horner decomposition; EQUATION;
D O I
10.47974/JIM-1798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hyperbolic tangent matrix function is a mathematical tool with diverse applications in various fields of mathematics, applied science, and engineering. The hyperbolic tangent matrix th(M), (M is an element of Mr (C)) can be determined through different techniques. In this paper, we establish several explicit formulas for th(tM). The first approach is based on Hermite matrix polynomial expansions, the second utilizes the decomposition of Fibonacci-H & ouml;rner, and the third involves polynomial decomposition utilizing the expression for the n-th power of the matrix and the polynomial decomposition of the exponential matrix. An example is provided to illustrate these methods.
引用
收藏
页码:1371 / 1381
页数:11
相关论文
共 16 条
  • [1] On explicit formulas for the principal matrix logarithm
    Abderraman Marrero, J.
    Ben Taher, R.
    Rachidi, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 142 - 148
  • [2] Ashry H., 2022, INT J MOD PHYS C, V11, P504
  • [3] Locally Exact Integrators for the Duffing Equation
    Cieslinski, Jan L.
    Kobus, Artur
    [J]. MATHEMATICS, 2020, 8 (02)
  • [4] Some applications of the Hermite matrix polynomials series expansions
    Defez, E
    Jodar, L
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 105 - 117
  • [5] ANALYTICAL SOLUTION OF THE NON-DISCRETIZED RADIATIVE-TRANSFER EQUATION FOR A SLAB OF FINITE OPTICAL DEPTH
    EFIMOV, GV
    VONWALDENFELS, W
    WEHRSE, R
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1995, 53 (01) : 59 - 74
  • [6] Accounting for the role of long walks on networks via a new matrix function
    Estrada, Ernesto
    Silver, Grant
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1581 - 1600
  • [7] Jodar L., 1996, J. Approx. Theory Appl., V12, P20
  • [8] KITTAPPA RK, 1993, LINEAR ALGEBRA APPL, V193, P211
  • [9] On Explicit Formulas of Hyperbolic Matrix Functions
    Laarichi, Y.
    Elkettani, Y.
    Gretete, D.
    Barmaki, M.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 201 - 210
  • [10] Explicit formulas for computing matrix trigonometric functions
    Laarichi, Yassine
    Barmaki, Mohammed
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2321 - 2331