Response of ecosystem water use efficiency to extreme drought and wet events in the Loess Plateau, China

被引:0
|
作者
Pei, Tingting [1 ]
Qi, Peixin [1 ]
Chen, Ying [1 ]
Xie, Baopeng [1 ]
Xi, Ruiyun [1 ]
机构
[1] Gansu Agr Univ, Coll Management, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Water use efficiency; Extreme drought; Extreme wetness; Loess Plateau; NET PRIMARY PRODUCTION; FOREST ECOSYSTEMS; VEGETATION GROWTH; CLIMATE-CHANGE; TERRESTRIAL ECOSYSTEMS; TEMPORAL PATTERNS; EDDY COVARIANCE; LAND-USE; CARBON; EVAPOTRANSPIRATION;
D O I
10.1016/j.foreco.2025.122528
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Variations in ecosystem water use efficiency (WUE) are central to understanding the terrestrial-atmosphere carbon-water coupling. However, the response of WUE to extreme climate events, such as intensified droughts and wet events, remains poorly understood. This study investigates the variations in WUE across the Loess Plateau of China from 2001 to 2020, focusing on how extreme drought and wet conditions influence WUE and the underlying drivers. Using remote sensing data of Gross Primary Productivity (GPP), Evapotranspiration (ET), and gridded climate data interpolated by ANUSPLIN, we reveal several key findings. First, extreme wetness has a more widespread impact on WUE (80.67 %) than extreme drought (57.86 %) during the study period. In addition, an unexpected increase in WUE during extreme wet years compared to dry years across all three major biomes (grassland, shrubland, and forest). Second, asymmetrical variations in GPP and ET contribute to the differences in WUE between wet and dry years. In wet years, WUE increases due to a combination of increased GPP and reduced ET, whereas in dry years, grassland and shrubland WUE rises due to less negative GPP relative to ET, forest WUE decrease attributed to decreased GPP and increased ET. Third, precipitation and temperature exert differing influences on WUE across biomes. In wet years, both factors contribute more significantly to WUE than in dry years, with precipitation being the dominant driver in grassland and shrubland, while temperature plays a more consistent role in forests under both extreme conditions. Our findings suggest that extreme wetness may be less detrimental to ecosystem WUE than extreme drought, particularly in water-limited regions. This study provides novel insights into how terrestrial ecosystems modulate carbon-water exchanges under hydroclimatic extremes, informing predictions of ecosystem resilience and function in a changing climate.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Response of Ecosystem Water Use Efficiency to Drought over China during 1982-2015: Spatiotemporal Variability and Resilience
    Guo, Limai
    Sun, Fubao
    Liu, Wenbin
    Zhang, Yongguang
    Wang, Hong
    Cui, Huijuan
    Wang, Hongquan
    Zhang, Jie
    Du, Benxu
    FORESTS, 2019, 10 (07):
  • [42] Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China
    Xu, Hao-jie
    Wang, Xin-ping
    Zhao, Chuan-yan
    Zhang, Xiao-xiao
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 278
  • [43] Variations in Ecosystem Service Value in Response to Land use Changes in the Loess Plateau in Northern Shaanxi Province, China
    Jing, L.
    Zhiyuan, R.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2011, 5 (01) : 109 - 118
  • [44] Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China
    Wang, Hong
    Wang, Chenbing
    Zhao, Xiumei
    Wang, Falin
    AGRICULTURAL WATER MANAGEMENT, 2015, 154 : 20 - 28
  • [45] Effect of Different Sowing Methods on Water Use Efficiency and Grain Yield of Wheat in the Loess Plateau, China
    Noor, Hafeez
    Sun, Min
    Lin, Wen
    Gao, Zhiqiang
    WATER, 2022, 14 (04)
  • [46] Effects of plastic film mulching on soil water use efficiency and wheat yield in the Loess Plateau of China
    Yang, Yajun
    Du, Wei
    Cui, Ziying
    Lei, Shuang
    Lei, Tong
    Lv, Jialong
    ARID LAND RESEARCH AND MANAGEMENT, 2020, 34 (04) : 405 - 418
  • [47] Effect of mulching and organic manure on maize yield, water, and nitrogen use efficiency in the Loess Plateau of China
    Xing, Yingying
    Fu, Jintao
    Wang, Xiukang
    PEERJ, 2024, 12
  • [48] Divergent spatial responses of plant and ecosystem water-use efficiency to climate and vegetation gradients in the Chinese Loess Plateau
    Zheng, Han
    Lin, Henry
    Zhu, Xian-Jin
    Jin, Zhao
    Bao, Han
    GLOBAL AND PLANETARY CHANGE, 2019, 181
  • [49] Statistical analysis of extreme drought and wet events in Russia
    Utkuzova D.N.
    Han V.M.
    Vil’fand R.M.
    Atmospheric and Oceanic Optics, 2015, 28 (4) : 336 - 346
  • [50] Divergent responses of ecosystem water-use efficiency to extreme seasonal droughts in Southwest China
    Wang, Min
    Ding, Zhi
    Wu, Chaoyang
    Song, Lisheng
    Ma, Mingguo
    Yu, Pujia
    Lu, Bingqing
    Tang, Xuguang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 760