Pre-Calabi-Yau algebras and topological quantum field theories

被引:0
作者
Kontsevich, Maxim [1 ]
Takeda, Alex [2 ]
Vlassopoulos, Yiannis [3 ]
机构
[1] Inst Hautes Etud Sci, Bures Sur Yvette, France
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] ILSP, Athena Res Ctr, Maroussi, Greece
关键词
Pre-Calabi-Yau; TQFT; Noncommutative geometry; Hochschild (co)homology; PROPs; QUADRATIC-DIFFERENTIALS; MODULI SPACE; A(INFINITY)-ALGEBRAS; DUALITY;
D O I
10.1007/s40879-024-00802-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion generalizing Calabi-Yau structures on A-infinity algebras and categories, which we call pre-Calabi-Yau structures. This notion does not need either one of the finiteness conditions (smoothness or compactness) which are required for Calabi-Yau structures to exist. In terms of noncommutative geometry, a pre-CY structure is as a polyvector field satisfying an integrability condition with respect to a noncommutative analogue of the Schouten-Nijenhuis bracket. We show that a pre-CY structure defines an action of a certain PROP of chains on decorated Riemann surfaces. In the language of the cobordism perspective on TQFTs, this should be interpreted as giving a partially defined extended 2-dimensional TQFT, whose 2-dimensional cobordisms are generated only by handles of index one. We present some examples of pre-CY structures appearing naturally in geometric and topological contexts.
引用
收藏
页数:101
相关论文
共 55 条
  • [1] [Anonymous], 1962, Transactions AMS
  • [2] Bondal A, 2003, MOSC MATH J, V3, P1
  • [3] Relative Calabi-Yau structures II: shifted Lagrangians in the moduli of objects
    Brav, Christopher
    Dyckerhoff, Tobias
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [4] Relative Calabi-Yau structures
    Brav, Christopher
    Dyckerhoff, Tobias
    [J]. COMPOSITIO MATHEMATICA, 2019, 155 (02) : 372 - 412
  • [5] Drummond-Cole GC, 2015, Arxiv, DOI arXiv:1506.02596
  • [6] Shifted Poisson structures and deformation quantization
    Calaque, Damien
    Pantev, Tony
    Toen, Bertrand
    Vaquie, Michel
    Vezzosi, Gabriele
    [J]. JOURNAL OF TOPOLOGY, 2017, 10 (02) : 483 - 584
  • [7] Caldararu A, 2024, Arxiv, DOI arXiv:2404.01499
  • [8] Caldararu A, 2020, Arxiv, DOI arXiv:2009.06673
  • [9] Caldararu A, 2020, Arxiv, DOI arXiv:2009.06659
  • [10] On a theorem of Kontsevich
    Conant, James
    Vogtmann, Karen
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (02): : 1167 - 1224