Existing integration of radar detection and communication (IDAC) systems are in general based on multi-input multi-output multi-stations or single-base transceiver splitting. However, these methods are challenging to realise IDAC for integrated receive-transmit half-duplex (IRTHD) pulse radars, which are detection-centric and are based on self-transmission and self-reception systems. The majority of recent studies in the field of IDAC for IRTHD pulse radars have focused on utilising time-division approaches to avoid conflicts, thereby also creating competition for radar time resources. In this paper, a pointer scheduling algorithm based on Tabu search (PS-TS) is proposed for IRTHD pulse radars, which solves the challenge of simultaneous efficient detection and communication. Firstly, the study presents a model for radar device-to-device (D2D) opportunistic communication and proposes a framework for pulse interleaving based on pointer scheduling to realise IDAC. Secondly, the PS-TS algorithm employs a Tabu search strategy to maintain high-quality solutions to avoid local optima and introduces a tolerance factor to maximise the communication success rate (CSR) with the minimal time expenditure. Simulation results indicate that the PS-TS algorithm outperforms the genetic algorithm and particle swarm optimisation in terms of robustness, CSR, and computational efficiency, providing real-time scheduling for IDAC systems.