Nonuniqueness of normalized ground states for nonlinear Schrödinger equations on metric graphs

被引:0
作者
Dovetta, Simone [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matematiche GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
NLS EQUATION; EXISTENCE; STABILITY;
D O I
10.1112/plms.70025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish general nonuniqueness results for normalized ground states of nonlinear Schr & ouml;dinger equations with power nonlinearity on metric graphs. Basically, we show that, whenever in the L2$L<^>2$-subcritical regime a graph hosts ground states at every mass, for nonlinearity powers close to the L2$L<^>2$-critical exponent p=6$p=6$, there is at least one value of the mass for which ground states are nonunique. As a consequence, we also show that, for all such graphs and nonlinearities, there exist action ground states that are not normalized ground states.
引用
收藏
页数:33
相关论文
共 30 条
[1]   Stationary states of NLS on star graphs [J].
Adami, R. ;
Cacciapuoti, C. ;
Finco, D. ;
Noja, D. .
EPL, 2012, 100 (01)
[2]   Non-Kirchhoff Vertices and Nonlinear Schrodinger Ground States on Graphs [J].
Adami, Riccardo ;
Boni, Filippo ;
Ruighi, Alice .
MATHEMATICS, 2020, 8 (04)
[3]   DIMENSIONAL CROSSOVER WITH A CONTINUUM OF CRITICAL EXPONENTS FOR NLS ON DOUBLY PERIODIC METRIC GRAPHS [J].
Adami, Riccardo ;
Dovetta, Simone ;
Serra, Enrico ;
Tilli, Paolo .
ANALYSIS & PDE, 2019, 12 (06) :1597-1612
[4]   Negative Energy Ground States for the L2-Critical NLSE on Metric Graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) :387-406
[5]   Threshold phenomena and existence results for NLS ground states on metric graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :201-223
[6]   NLS ground states on graphs [J].
Adami, Riccardo ;
Serra, Enrico ;
Tilli, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :743-761
[7]   Classification and stability of positive solutions to the NLS equation on the T-metric graph [J].
Agostinho, Francisco ;
Correia, Simao ;
Tavares, Hugo .
NONLINEARITY, 2024, 37 (02)
[8]  
Berkolaiko G., 2013, Introduction to quantum graphs, DOI [10.1090/surv/186, DOI 10.1090/SURV/186]
[9]   Edge-localized states on quantum graphs in the limit of large mass [J].
Berkolaiko, Gregory ;
Marzuola, Jeremy L. ;
Pelinovsky, Dmitry E. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (05) :1295-1335
[10]  
Besse C, 2022, SMAI Journal of Computational Mathematics, V8, P1, DOI [10.5802/smai-jcm.78, 10.5802/smai-jcm.78, DOI 10.5802/SMAI-JCM.78]