Influence of Co Doping on Copper Nanoclusters for CO2 Electroreduction

被引:0
作者
Nascimento, Guilherme R. [1 ]
Neto, Marionir M. C. B. [1 ]
Da Silva, Juarez L. F. [2 ]
Galvao, Breno R. L. [1 ]
机构
[1] Ctr Fed Educ Tecnol Minas Gerais CEFET MG, BR-30421169 Belo Horizonte, MG, Brazil
[2] Univ Sao Paulo, Sao Carlos Inst Chem, BR-13560970 Sao Paulo, Brazil
关键词
REDUCTION; ADSORPTION; ALLOYS; NANOPARTICLES; ETHANOL; METHANE; ORIGIN; WATER; AU;
D O I
10.1021/acsomega.4c07514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper stands out as one of the few metals capable of reducing carbon dioxide (CO2) beyond carbon monoxide (CO) and formic acid (HCOOH). Furthermore, substitutional doping in nanoclusters (NCs) has been expected to enhance their catalytic performance, even though our atomistic understanding of the influence of dopants is far from complete. Here, we investigate the effects induced by cobalt (Co) substitution doping in the Cu55 NC on the electroreduction of CO2 using density functional theory calculations combined with the computational hydrogen electrode model. We found that the replacement of a single copper atom in Cu55 by Co is energetically favorable, and it induces a drastic change in the density of states, for example, the appearance of a sharp peak near the Fermi level. The presence of a dopant atom on the surface increases the adsorption strength for all reaction intermediates, while also changing the preference of the adsorption site for selected species. The presence of the dopant atom on the surface of the particle hinders the production of CO in favor of more reduced products such as methane and methanol. From our analysis, it was observed that the catalyst will not suffer from poisoning by the OH species. However, our calculations predict that the catalysts will also enhance the formation of hydrogen in a competing reaction.
引用
收藏
页码:47114 / 47121
页数:8
相关论文
共 52 条
[1]   Structure- and Electrolyte-Sensitivity in CO2 Electroreduction [J].
Aran-Ais, Rosa M. ;
Gao, Dunfeng ;
Roldan Cuenya, Beatriz .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2906-2917
[2]   Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [J].
Batista, Krys E. A. ;
Soares, Marinalva D. ;
Quiles, Marcos G. ;
Piotrowski, Mauricio J. ;
Da Silva, Juarez L. F. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2294-2301
[3]   CO2 electroreduction on copper- cobalt nanoparticles: Size and composition effect [J].
Bernal, M. ;
Bagger, A. ;
Scholten, F. ;
Sinev, I. ;
Bergmann, A. ;
Ahmadi, M. ;
Rossmeisl, J. ;
Roldan Cuenya, Beatriz .
NANO ENERGY, 2018, 53 :27-36
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]   Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction [J].
Bondue, Christoph J. ;
Graf, Matthias ;
Goyal, Akansha ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) :279-285
[6]   Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons [J].
Cheng, Mu-Jeng ;
Clark, Ezra L. ;
Pham, Hieu H. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2016, 6 (11) :7769-7777
[7]   Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts [J].
Darby, Matthew T. ;
Reocreux, Romain ;
Sykes, E. Charles. H. ;
Michaelides, Angelos ;
Stamatakis, Michail .
ACS CATALYSIS, 2018, 8 (06) :5038-5050
[8]   System-Dependent Dispersion Coefficients for the DFT-D3 Treatment of Adsorption Processes on Ionic Surfaces [J].
Ehrlich, Stephan ;
Moellmann, Jonas ;
Reckien, Werner ;
Bredow, Thomas ;
Grimme, Stefan .
CHEMPHYSCHEM, 2011, 12 (17) :3414-3420
[9]   Electrochemical CO2 Reduction Reaction on M@Cu(211) Bimetallic Single-Atom Surface Alloys: Mechanism, Kinetics, and Catalyst Screening [J].
Feng, Yonghao ;
An, Wei ;
Wang, Zeming ;
Wang, Yuanqiang ;
Men, Yong ;
Du, Yuanyuan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01) :210-222
[10]  
Friedlingstein P., 2022, Earth System Science Data, V14, P4811, DOI DOI 10.5194/ESSD-14-4811-2022