Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

被引:0
作者
Wang, Yifan [1 ]
Aivalioti, Evmorfia [2 ]
Stamatelopoulos, Kimon [2 ,3 ]
Zervas, Georgios [2 ]
Mortensen, Martin Bodtker [4 ,5 ]
Zeller, Marianne [6 ,7 ]
Liberale, Luca [8 ,9 ]
Di Vece, Davide [8 ,10 ]
Schweiger, Victor [11 ]
Camici, Giovanni G. [1 ]
Luescher, Thomas F. [1 ,12 ,13 ]
Kraler, Simon [1 ,14 ]
机构
[1] Univ Zurich, Ctr Mol Cardiol, CH- 8952 Schlieren, Switzerland
[2] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Med Sch, Dept Clin Therapeut, Athens, Greece
[3] Newcastle Univ, Biosci Inst, Fac Med Sci, Vasc Biol & Med Theme, Newcastle Upon Tyne, England
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[5] Johns Hopkins Univ, Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Dis, Sch Med, Baltimore, MD USA
[6] CHU Dijon Bourgogne, Dept Cardiol, Dijon, France
[7] Univ Bourgogne, Physiolopathol & Epidemiol Cerebrocardiovasc PEC2, EA 7460, Dijon, France
[8] Univ Genoa, Dept Internal Med, Clin Internal Med 1, Genoa, Italy
[9] IRCCS Osped Policlin San Martino Genoa, Italian Cardiovasc Network, Genoa, Italy
[10] Univ Med Greifswald, Internal Med B, Greifswald, Germany
[11] Charite Campus Virchow Klinikum, Deutsch Herzzentrum, Berlin, Germany
[12] Kings Coll London, Royal Brompton & Harefield Hosp GSTT, London, England
[13] Kings Coll London, Cardiovasc Acad Grp, London, England
[14] Cantonal Hosp Baden, Dept Internal Med & Cardiol, Baden, Switzerland
关键词
artificial intelligence; biomarkers; cardiovascular disease; inflammation; machine learning; omics; precision medicine; residual risk; risk prediction; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; SECONDARY PREVENTION; INFLAMMATORY RISK; CLUSTER-ANALYSIS; PREDICTION; DISEASE; MORTALITY; EVENTS; CLASSIFICATION;
D O I
10.1111/eci.70017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
引用
收藏
页数:19
相关论文
共 146 条
  • [1] Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools
    Adedinsewo, Demilade A.
    Pollak, Amy W.
    Phillips, Sabrina D.
    Smith, Taryn L.
    Svatikova, Anna
    Hayes, Sharonne N.
    Mulvagh, Sharon L.
    Norris, Colleen
    Roger, Veronique L.
    Noseworthy, Peter A.
    Yao, Xiaoxi
    Carter, Rickey E.
    [J]. CIRCULATION RESEARCH, 2022, 130 (04) : 673 - 690
  • [2] Agharezaei Laleh, 2016, Acta Inform Med, V24, P354, DOI 10.5455/aim.2016.24.354.359
  • [3] Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis
    Ambale-Venkatesh, Bharath
    Yang, Xiaoying
    Wu, Colin O.
    Liu, Kiang
    Hundley, W. Gregory
    McClelland, Robyn
    Gomes, Antoinette S.
    Folsom, Aaron R.
    Shea, Steven
    Guallar, Eliseo
    Bluemke, David A.
    Lima, Joao A. C.
    [J]. CIRCULATION RESEARCH, 2017, 121 (09) : 1092 - +
  • [4] [Anonymous], 2024, AI vs. machine learning vs. deep learning vs. neural networks: What's the difference?
  • [5] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [6] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    [J]. NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [7] Finding missed cases of familial hypercholesterolemia in health systems using machine learning
    Banda, Juan M.
    Sarraju, Ashish
    Abbasi, Fahim
    Parizo, Justin
    Pariani, Mitchel
    Ison, Hannah
    Briskin, Elinor
    Wand, Hannah
    Dubois, Sebastien
    Jung, Kenneth
    Myers, Seth A.
    Rader, Daniel J.
    Leader, Joseph B.
    Murray, Michael F.
    Myers, Kelly D.
    Wilemon, Katherine
    Shah, Nigam H.
    Knowles, Joshua W.
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [8] Ticagrelor for Secondary Prevention of Atherothrombotic Events in Patients With Multivessel Coronary Disease
    Bansilal, Sameer
    Bonaca, Marc P.
    Cornel, Jan H.
    Storey, Robert F.
    Bhatt, Deepak L.
    Steg, Gabriel
    Im, Kyungah
    Murphy, Sabina A.
    Angiolillo, Dominick J.
    Kiss, Robert G.
    Parkhomenko, Alexander N.
    Lopez-Sendon, Jose
    Isaza, Daniel
    Goudev, Assen
    Kontny, Frederic
    Held, Peter
    Jensen, Eva C.
    Braunwald, Eugene
    Sabatine, Marc S.
    Ophuis, A. J. Oude
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (05) : 489 - 496
  • [9] Characteristics Associated With Decreased or Increased Mortality Risk From Glycemic Therapy Among Patients With Type 2 Diabetes and High Cardiovascular Risk: Machine Learning Analysis of the ACCORD Trial
    Basu, Sanjay
    Raghavan, Sridharan
    Wexler, Deborah J.
    Berkowitz, Seth A.
    [J]. DIABETES CARE, 2018, 41 (03) : 604 - 612
  • [10] Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials
    Basu, Sanjay
    Sussman, Jeremy B.
    Berkowitz, Seth A.
    Hayward, Rodney A.
    Yudkin, John S.
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (10) : 788 - 798