Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

被引:3
作者
Wang, Yifan [1 ]
Aivalioti, Evmorfia [2 ]
Stamatelopoulos, Kimon [2 ,3 ]
Zervas, Georgios [2 ]
Mortensen, Martin Bodtker [4 ,5 ]
Zeller, Marianne [6 ,7 ]
Liberale, Luca [8 ,9 ]
Di Vece, Davide [8 ,10 ]
Schweiger, Victor [11 ]
Camici, Giovanni G. [1 ]
Luescher, Thomas F. [1 ,12 ,13 ]
Kraler, Simon [1 ,14 ]
机构
[1] Univ Zurich, Ctr Mol Cardiol, CH- 8952 Schlieren, Switzerland
[2] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Med Sch, Dept Clin Therapeut, Athens, Greece
[3] Newcastle Univ, Biosci Inst, Fac Med Sci, Vasc Biol & Med Theme, Newcastle Upon Tyne, England
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[5] Johns Hopkins Univ, Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Dis, Sch Med, Baltimore, MD USA
[6] CHU Dijon Bourgogne, Dept Cardiol, Dijon, France
[7] Univ Bourgogne, Physiolopathol & Epidemiol Cerebrocardiovasc PEC2, EA 7460, Dijon, France
[8] Univ Genoa, Dept Internal Med, Clin Internal Med 1, Genoa, Italy
[9] IRCCS Osped Policlin San Martino Genoa, Italian Cardiovasc Network, Genoa, Italy
[10] Univ Med Greifswald, Internal Med B, Greifswald, Germany
[11] Charite Campus Virchow Klinikum, Deutsch Herzzentrum, Berlin, Germany
[12] Kings Coll London, Royal Brompton & Harefield Hosp GSTT, London, England
[13] Kings Coll London, Cardiovasc Acad Grp, London, England
[14] Cantonal Hosp Baden, Dept Internal Med & Cardiol, Baden, Switzerland
关键词
artificial intelligence; biomarkers; cardiovascular disease; inflammation; machine learning; omics; precision medicine; residual risk; risk prediction; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; SECONDARY PREVENTION; INFLAMMATORY RISK; CLUSTER-ANALYSIS; PREDICTION; MORTALITY; DISEASE; EVENTS; CLASSIFICATION;
D O I
10.1111/eci.70017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
引用
收藏
页数:19
相关论文
共 146 条
[1]   Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools [J].
Adedinsewo, Demilade A. ;
Pollak, Amy W. ;
Phillips, Sabrina D. ;
Smith, Taryn L. ;
Svatikova, Anna ;
Hayes, Sharonne N. ;
Mulvagh, Sharon L. ;
Norris, Colleen ;
Roger, Veronique L. ;
Noseworthy, Peter A. ;
Yao, Xiaoxi ;
Carter, Rickey E. .
CIRCULATION RESEARCH, 2022, 130 (04) :673-690
[2]  
Agharezaei Laleh, 2016, Acta Inform Med, V24, P354, DOI 10.5455/aim.2016.24.354.359
[3]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[4]  
[Anonymous], 2024, This vs. that. keyloggers vs. spyware-what's the difference?
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[7]   Finding missed cases of familial hypercholesterolemia in health systems using machine learning [J].
Banda, Juan M. ;
Sarraju, Ashish ;
Abbasi, Fahim ;
Parizo, Justin ;
Pariani, Mitchel ;
Ison, Hannah ;
Briskin, Elinor ;
Wand, Hannah ;
Dubois, Sebastien ;
Jung, Kenneth ;
Myers, Seth A. ;
Rader, Daniel J. ;
Leader, Joseph B. ;
Murray, Michael F. ;
Myers, Kelly D. ;
Wilemon, Katherine ;
Shah, Nigam H. ;
Knowles, Joshua W. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[8]   Ticagrelor for Secondary Prevention of Atherothrombotic Events in Patients With Multivessel Coronary Disease [J].
Bansilal, Sameer ;
Bonaca, Marc P. ;
Cornel, Jan H. ;
Storey, Robert F. ;
Bhatt, Deepak L. ;
Steg, Gabriel ;
Im, Kyungah ;
Murphy, Sabina A. ;
Angiolillo, Dominick J. ;
Kiss, Robert G. ;
Parkhomenko, Alexander N. ;
Lopez-Sendon, Jose ;
Isaza, Daniel ;
Goudev, Assen ;
Kontny, Frederic ;
Held, Peter ;
Jensen, Eva C. ;
Braunwald, Eugene ;
Sabatine, Marc S. ;
Ophuis, A. J. Oude .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (05) :489-496
[9]   Characteristics Associated With Decreased or Increased Mortality Risk From Glycemic Therapy Among Patients With Type 2 Diabetes and High Cardiovascular Risk: Machine Learning Analysis of the ACCORD Trial [J].
Basu, Sanjay ;
Raghavan, Sridharan ;
Wexler, Deborah J. ;
Berkowitz, Seth A. .
DIABETES CARE, 2018, 41 (03) :604-612
[10]   Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials [J].
Basu, Sanjay ;
Sussman, Jeremy B. ;
Berkowitz, Seth A. ;
Hayward, Rodney A. ;
Yudkin, John S. .
LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (10) :788-798