Theoretical research on a large beam tunnel, coalesced-mode broadband traveling wave tube

被引:0
作者
Cui, Zhongtao [1 ]
Yuan, Xuesong [1 ]
Xue, Qinwen [1 ]
Le, Yiwen [1 ]
Zhu, Yunze [1 ]
Cole, Matthew Thomas [2 ]
Yan, Yang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Terahertz Sci & Technol Key Lab Sichuan Prov, Chengdu 610054, Peoples R China
[2] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, England
基金
中国国家自然科学基金;
关键词
OPERATION; DESIGN;
D O I
10.1063/5.0229915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A coalesced-mode, wide bandwidth traveling wave tube (TWT) with a large beam tunnel is herein investigated for use in millimeter-wave and terahertz amplification sources. The high frequency structure and input-output circuits of the TWT are designed to operate in both mode 1 (coalesced TE10-like mode) and mode 3 (coalesced TM11-like mode) at a same operating voltage, allowing a significant increase in the bandwidth. The gain difference between the two modes is reduced to less than 3 dB as the energy transmission is optimized with a large circular beam tunnel. Particle-in-cell simulations are performed at 24 kV with a beam current of 350 mA, and the coalesced-mode TWT is predicted to operate in two atmospheric windows, with a maximum output power of 530 W and a peak linear gain of 36 dB. The 3 dB bandwidth is predicted to be 41.6 GHz, ranging from 103.1 to 144.7 GHz, corresponding to a relative bandwidth of over 33%.
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Booske J.H., Plasma physics and related challenges of millimeter-wave-to-terahertz and high-power microwave generation, Phys. Plasmas, 15, 5, (2008)
  • [2] Siegel P.H., Terahertz technology, IEEE Trans. Microwave Theory Tech., 50, 3, pp. 910-928, (2002)
  • [3] Wallace H.B., Analysis of RF imaging applications at frequencies over 100 GHz, Appl. Opt., 49, 19, pp. E38-E47, (2010)
  • [4] Markelz A.G., Roitberg A., Heilweil E.J., Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz, Chem. Phys. Lett., 320, 1-2, pp. 42-48, (2000)
  • [5] Gilmour A.S., Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons, (2011)
  • [6] Kowalski E.J., Shapiro M.A., Temkin R.J., An overmoded W-band coupled-cavity TWT, IEEE Trans. Electron Devices, 62, 5, pp. 1609-1616, (2015)
  • [7] Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G., Park J., Temkin R.J., Vacuum electronic high power terahertz sources, IEEE Trans. Terahertz Sci. Technol., 1, 1, pp. 54-75, (2011)
  • [8] Bhattacharjee S., Booske J.H., Kory C.L., van der Weide D.W., Limbach S., Gallagher S., Stevens A., Genack M., Welter J., Lopez M., Gilgenbach R.M., Wohlbier J., Ives R.L., Read M.E., Divan R., Mancini D.C., Folded waveguide traveling-wave tube sources for terahertz radiation, IEEE Trans. Plasma Sci., 32, 3, pp. 1002-1014, (2004)
  • [9] Cai J., Wu X., Feng J., A cosine-shaped vane-folded waveguide and ridge waveguide coupler, IEEE Trans. Electron Devices, 63, 6, pp. 2544-2549, (2016)
  • [10] Ruan C., Zhang M., Dai J., Zhang C., Wang S., Yang X., Feng J., W-band multiple beam staggered double-vane traveling wave tube with broad band and high output power, IEEE Trans. Plasma Sci., 43, 7, pp. 2132-2139, (2015)