AutoCD: Automated Machine Learning for Causal Discovery Algorithms

被引:0
作者
Chan, Gerlise [1 ]
Claassen, Tom [2 ]
Hoos, Holger H. [1 ,3 ]
Heskes, Tom [2 ]
Baratchi, Mitra [1 ]
机构
[1] Leiden Univ, Leiden Inst Adv Comp Sci LIACS, Leiden, Netherlands
[2] Radboud Univ Nijmegen, Inst Comp & Informat Sci iCIS, Nijmegen, Netherlands
[3] Rhein Westfal TH Aachen, Chair AI Methodol AIM, Aachen, Germany
来源
INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS | 2024年 / 246卷
基金
荷兰研究理事会;
关键词
Causal discovery; Automated Machine Learning; Causal tuning; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies automated machine learning (AutoML) for causal discovery, the process of uncovering cause-and-effect relationships within data. Causal discovery is an unsupervised learning problem, as the target (the underlying ground truth causal model) is typically unknown. Therefore, the loss functions commonly used as an optimisation objective in AutoML systems developed for supervised learning problems are not applicable. We propose AutoCD, the first AutoML system utilising Bayesian optimisation based on a search space of causal discovery algorithms. In designing AutoCD, we study and compare the applicability of two different loss functions and post-hoc corrections. Additionally, based on the analysis of the performance of AutoCD, we propose an improved version called AutoCD(PC) by warm-starting the search from the PC algorithm. Results from our experiments on datasets simulated from 45 graphical models demonstrate that AutoCD PC performs better than the baselines by ranking the highest (avg. rank 3.69) compared to the best causal tuning baseline (avg. rank 5.21) and the best fine-tuned individual algorithm (avg. rank 4.36).
引用
收藏
页码:106 / 132
页数:27
相关论文
共 34 条
[1]   Automated machine learning: past, present and future [J].
Baratchi, Mitra ;
Wang, Can ;
Limmer, Steffen ;
van Rijn, Jan N. ;
Hoos, Holger ;
Back, Thomas ;
Olhofer, Markus .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
[2]  
Bello K, 2022, ADV NEUR IN
[3]  
BengioY KeglB, 2011, ADV NEURAL INFORM PR, P2546
[4]   Out-of-Sample Tuning for Causal Discovery [J].
Biza, Konstantina ;
Tsamardinos, Ioannis ;
Triantafillou, Sofia .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) :4963-4973
[5]   Ranking and Selecting Clustering Algorithms Using a Meta-Learning Approach [J].
de Souto, Marcilio C. P. ;
Prudencio, Ricardo B. C. ;
Soares, Rodrigo G. F. ;
de Araujo, Daniel S. A. ;
Costa, Ivan G. ;
Ludermir, Teresa B. ;
Schliep, Alexander .
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, :3729-+
[6]   Model Selection Techniques An overview [J].
Ding, Jie ;
Tarokh, Vahid ;
Yang, Yuhong .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) :16-34
[7]  
Feurer M, 2015, ADV NEUR IN, V28
[8]  
Flach P., 2012, Machine learning: The art and science of algorithms that make sense of data, DOI DOI 10.1017/CBO9780511973000
[9]  
Hutter F, 2019, SPRING SER CHALLENGE, P1, DOI 10.1007/978-3-030-05318-5
[10]  
Hutter Frank, 2011, Learning and Intelligent Optimization. 5th International Conference, LION 5. Selected Papers, P507, DOI 10.1007/978-3-642-25566-3_40