Removal of per- and polyfluoroalkyl substances (PFAS) from municipal wastewater by foam fractionation

被引:3
|
作者
Malovanyy, Andriy [1 ]
Forsen, Erika [2 ]
Lihammar, Richard [1 ]
机构
[1] IVL Swedish Environm Res Inst, Box 21060, S-11428 Stockholm, Sweden
[2] Kappalaforbundet, Sodra Kungsvagen 315, S-18166 Lidingo, Sweden
关键词
Foam fractionation; PFAS; Municipal wastewater; Surfactant; EPS;
D O I
10.1016/j.watres.2024.122660
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Municipal wastewater has a relatively low content of perand polyfluoroalkyl substances (PFAS), compared with other point sources such as landfill leachate and industrial effluents. Nevertheless, it is considered as one of the major point pollution sources. Foam fractionation was previously shown to effectively remove PFAS from different water matrices and to reach a high PFAS enrichment. In this study, the removal of PFAS from municipal wastewater of different origins was investigated. Despite the low foaming potential, it was possible to reach an average removal of the sum of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS) of 93 %, the removal of the sum of 21 PFAS of 56 %, and the removal of the sum of PFAS expressed as PFOA equivalents (Sigma PFOAeq) of 91 %, without any surfactant addition utilizing a novel approach of foam collection. The PFAS content was reduced to below the limit values for drinking water in Sweden and the anticipated future limit values for surface water in the European Union. The addition of four commercial surfactants and an extract of extracellular polymeric substances (EPS) from waste activated sludge each enhanced the foam formation. Moreover, a cationic surfactant increased the removal of short-chain PFAS. Additionally, foam fractionation of activated sludge was performed. A considerably lower Sigma PFOAeq removal of only 20 % was demonstrated, which was explained by a high proportion of PFAS sorbed to sludge. Finally, the study discusses the practical implications of the application of foam fractionation at municipal wastewater treatment plants.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS)
    Chris McCarthy
    William Kappleman
    William DiGuiseppi
    Current Pollution Reports, 2017, 3 : 289 - 301
  • [22] Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review
    Zhang, Zhiming
    Sarkar, Dibyendu
    Biswas, Jayanta Kumar
    Datta, Rupali
    BIORESOURCE TECHNOLOGY, 2022, 344
  • [23] Epigenetic changes by per- and polyfluoroalkyl substances (PFAS)
    Kim, Sujin
    Thapar, Isha
    Brooks, Bryan W.
    Brooks, Bryan W. (bryan_brooks@baylor.edu); Kim, Sujin (sujin_kim@baylor.edu), 1600, Elsevier Ltd (279):
  • [24] Removal of per- and polyfluoroalkyl substances from wastewater via aerosol capture
    Nguyen, Dung
    Stults, John
    Devon, Julie
    Novak, Eden
    Lanza, Heather
    Choi, Youn
    Lee, Linda
    Schaefer, Charles E.
    Journal of Hazardous Materials, 2024, 465
  • [25] Adsorption of per- and polyfluoroalkyl substances (PFAS) to containers
    Zenobio, Jenny E.
    Salawu, Omobayo A.
    Han, Ziwei
    Adeleye, Adeyemi S.
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2022, 7
  • [26] An overview of the uses of per- and polyfluoroalkyl substances (PFAS)
    Gluege, Juliane
    Scheringer, Martin
    Cousins, Ian T.
    DeWitt, Jamie C.
    Goldenman, Gretta
    Herzke, Dorte
    Lohmann, Rainer
    Ng, Carla A.
    Trier, Xenia
    Wang, Zhanyun
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2020, 22 (12) : 2345 - 2373
  • [27] Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS)
    McCarthy, Chris
    Kappleman, William
    DiGuiseppi, William
    CURRENT POLLUTION REPORTS, 2017, 3 (04): : 289 - 301
  • [28] Removal of per- and polyfluoroalkyl substances from wastewater via aerosol capture
    Nguyen, Dung
    Stults, John
    Devon, Julie
    Novak, Eden
    Lanza, Heather
    Choi, Youn
    Lee, Linda
    Schaefer, Charles E.
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 465
  • [29] Efficient replacement for per- and polyfluoroalkyl substances (PFAS)
    Hänig, Jens-Paul
    Genz, Kerstin
    JOT, Journal fuer Oberflaechentechnik, 2024, 64 (Suppl 4): : 24 - 26
  • [30] Removal of per- and polyfluoroalkyl substances (PFAS) from water by ceric(iv) ammonium nitrate
    Sun, Jun
    Jennepalli, Sreenu
    Lee, Matthew
    O'Carroll, Denis M.
    Akermark, Bjorn
    Manefield, Michael J.
    Das, Biswanath
    Kumar, Naresh
    RSC ADVANCES, 2021, 11 (29) : 17642 - 17645