Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

被引:0
作者
Cuillier, Paul [1 ]
Tucker, Matthew G. [2 ]
Zhang, Yuanpeng [2 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43212 USA
[2] Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2024年 / 57卷
基金
美国国家科学基金会;
关键词
reverse Monte Carlo; machine learning; interatomic potentials; total scattering; BAYESIAN FORCE-FIELDS; 3 BODY CORRELATIONS; MOLECULAR-DYNAMICS; DIFFRACTION DATA; SIMPLE LIQUIDS; SIMULATION; SCATTERING; HRMC;
D O I
10.1107/S1600576724009282
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in RMCProfile that grants flexibility to apply potentials supported by the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.
引用
收藏
页码:1780 / 1788
页数:9
相关论文
共 50 条
  • [1] Advancing reverse Monte Carlo structure refinements to the nanoscale
    Eremenko, M.
    Krayzman, V.
    Gagin, A.
    Levin, I.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 : 1561 - 1570
  • [2] RMCProfile7: reverse Monte Carlo for multiphase systems
    Slawinski, Wojciech A.
    Kerr, Christopher J.
    Zhang, Yuanpeng
    Playford, Helen Y.
    Dove, Martin T.
    Phillips, Anthony E.
    Tucker, Matthew G.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2024, 57 : 1251 - 1262
  • [3] New capabilities for enhancement of RMCProfile: instrumental profiles with arbitrary peak shapes for structural refinements using the reverse Monte Carlo method
    Zhang, Yuanpeng
    Eremenko, Maksim
    Krayzman, Victor
    Tucker, Matthew G.
    Levin, Igor
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 : 1509 - 1518
  • [4] Comparison of interatomic potentials of water via structure factors reconstructed from simulated partial radial distribution functions: a reverse Monte Carlo based approach
    Steinczinger, Zsuzsanna
    Jovari, Pal
    Pusztai, Laszlo
    PHYSICA SCRIPTA, 2017, 92 (01)
  • [5] Construction of Machine Learning Interatomic Potentials for Metals
    Dmitriev, S. V.
    Kistanov, A. A.
    Kosarev, I. V.
    Scherbinin, S. A.
    Shapeev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (09) : 1408 - 1413
  • [6] Towards better efficiency of interatomic linear machine learning potentials
    Goryaeva, Alexandra M.
    Maillet, Jean-Bernard
    Marinica, Mihai-Cosmin
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 166 : 200 - 209
  • [7] Machine learning interatomic potentials for aluminium: application to solidification phenomena
    Jakse, Noel
    Sandberg, Johannes
    Granz, Leon F.
    Saliou, Anthony
    Jarry, Philippe
    Devijver, Emilie
    Voigtmann, Thomas
    Horbach, Jurgen
    Meyer, Andreas
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (03)
  • [8] Reverse Monte Carlo modeling of liquid water with the explicit use of the SPC/E interatomic potential
    Pethes, Ildiko
    Pusztai, Laszlo
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (06)
  • [9] HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials
    Opletal, G.
    Petersen, T. C.
    Snook, I. K.
    Russo, S. P.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (08) : 1946 - 1957
  • [10] Adaptive loss weighting for machine learning interatomic potentials
    Ocampo, Daniel
    Posso, Daniela
    Namakian, Reza
    Gao, Wei
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244