Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs

被引:0
|
作者
Li, Rao [1 ]
机构
[1] Univ South Carolina Aiken, Dept Comp Sci Engn & Math, Aiken, SC 29801 USA
来源
CONTRIBUTIONS TO MATHEMATICS | 2024年 / 10卷
关键词
matrix; largest eigenvalue; Hamiltonian graph; traceable graph;
D O I
10.47443/cm.2024.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G ( V, E) be a graph. Define M(G; alpha, /3) : alpha D + /3A, where D and A are the diagonal matrix and adjacency matrix of G , respectively, and alpha , /3 , are real numbers such that ( alpha, /3) 6 (0 , 0) . Using the largest and smallest eigenvalues of M(G; alpha, /3) with alpha >= /3 > 0 , sufficient conditions for the Hamiltonian and traceable graphs are presented.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 42 条
  • [41] CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) : 401 - 412
  • [42] Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph
    Aouchiche, M.
    Bell, F. K.
    Cvetkovic, D.
    Hansen, P.
    Rowlinson, P.
    Simic, S. K.
    Stevanovic, D.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (03) : 661 - 676