Enhancing few-shot object detection through pseudo-label mining

被引:0
作者
Garcia-Fernandez, Pablo [1 ]
Cores, Daniel [1 ]
Mucientes, Manuel [1 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnol Intelixentes CiTIUS, Santiago De Compostela, Spain
关键词
Few-shot; Object detection; Few-shot learning; Pseudo-label mining; Pseudo-labeling;
D O I
10.1016/j.imavis.2024.105379
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot object detection involves adapting an existing detector to a set of unseen categories with few annotated examples. This data limitation makes these methods to underperform those trained on large labeled datasets. In many scenarios, there is a high amount of unlabeled data that is never exploited. Thus, we propose to e xPAND the initial novel set by mining pseudo-labels. From a raw set of detections, xPAND obtains reliable pseudo-labels suitable for training any detector. To this end, we propose two new modules: Class and Box confirmation. Class Confirmation aims to remove misclassified pseudo-labels by comparing candidates with expected class prototypes. Box Confirmation estimates IoU to discard inadequately framed objects. Experimental results demonstrate that xPAND enhances the performance of multiple detectors up to +5.9 nAP and +16.4 nAP50 points for MS-COCO and PASCAL VOC, respectively, establishing anew state of the art. Code: https://github.com/PAGF188/xPAND.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] Bateni P, 2020, PROC CVPR IEEE, P14481, DOI 10.1109/CVPR42600.2020.01450
  • [2] Carion N. etal, 2020, EUR C COMP VIS, P213
  • [3] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [4] Dual-Awareness Attention for Few-Shot Object Detection
    Chen, Tung-, I
    Liu, Yueh-Cheng
    Su, Hung-Ting
    Chang, Yu-Cheng
    Lin, Yu-Hsiang
    Yeh, Jia-Fong
    Chen, Wen-Chin
    Hsu, Winston H.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 291 - 301
  • [5] Meta-tuning Loss Functions and Data Augmentation for Few-shot Object Detection
    Demirel, Berkan
    Baran, Orhun Bugra
    Cinbis, Ramazan Gokberk
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7339 - 7349
  • [6] Dosovitskiy A., 2021, P INT C LEARN REPR I
  • [7] σ-Adaptive Decoupled Prototype for Few-Shot Object Detection
    Du, Jinhao
    Zhang, Shan
    Chen, Qiang
    Le, Haifeng
    Sun, Yanpeng
    Ni, Yao
    Wang, Jian
    He, Bin
    Wang, Jingdong
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18904 - 18914
  • [8] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [9] Multiscale Vision Transformers
    Fan, Haoqi
    Xiong, Bo
    Mangalam, Karttikeya
    Li, Yanghao
    Yan, Zhicheng
    Malik, Jitendra
    Feichtenhofer, Christoph
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6804 - 6815
  • [10] Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
    Fan, Qi
    Zhuo, Wei
    Tang, Chi-Keung
    Tai, Yu-Wing
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4012 - 4021