MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN WITH NONNEGATIVE RICCI CURVATURE

被引:2
作者
Benatti, Luca [1 ]
Fogagnolo, Mattia [2 ]
Mazzieri, Lorenzo [3 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] Univ Padua, Padua, Italy
[3] Univ Studi Trento, Povo, Italy
关键词
geometric inequalities; nonlinear potential theory; monotonicity formulas; inverse mean curvature flow; REGULARITY; HYPERSURFACES; MONOTONICITY; GEOMETRY;
D O I
10.2140/apde.2024.17.3039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Euclidean volume growth. For every open bounded subset with smooth boundary we establish the validity of an optimal Minkowski inequality. We also characterise the equality case, provided the domain is strictly outward minimising and strictly mean convex. Along with the proof, we establish in full generality sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic manifolds with nonnegative Ricci curvature.
引用
收藏
页码:3039 / 3077
页数:42
相关论文
共 52 条
[1]  
Agostiniani V., 2022, MATH ENG-US, V4, P13
[2]   Minkowski Inequalities via Nonlinear Potential Theory [J].
Agostiniani, Virginia ;
Fogagnolo, Mattia ;
Mazzieri, Lorenzo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (01) :51-85
[3]   Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature [J].
Agostiniani, Virginia ;
Fogagnolo, Mattia ;
Mazzieri, Lorenzo .
INVENTIONES MATHEMATICAE, 2020, 222 (03) :1033-1101
[4]   Monotonicity formulas in potential theory [J].
Agostiniani, Virginia ;
Mazzieri, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 59 (01)
[5]   Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature [J].
Balogh, Zoltan M. ;
Kristaly, Alexandru .
MATHEMATISCHE ANNALEN, 2023, 385 (3-4) :1747-1773
[6]  
Benatti L., 2022, Ph.D. thesis,
[7]   The asymptotic behaviour of p-capacitary potentials in asymptotically conical manifolds [J].
Benatti, Luca ;
Fogagnolo, Mattia ;
Mazzieri, Lorenzo .
MATHEMATISCHE ANNALEN, 2024, 388 (01) :99-139
[8]   SOME SPHERE THEOREMS IN LINEAR POTENTIAL THEORY [J].
Borghini, Stefano ;
Mascellani, Giovanni ;
Mazzieri, Lorenzo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) :7757-7790
[10]   A Minkowski Inequality for Hypersurfaces in the Anti-de Sitter-Schwarzschild Manifold [J].
Brendle, Simon ;
Hung, Pei-Ken ;
Wang, Mu-Tao .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (01) :124-144