Interactive YOLO-based Object Detection using a Polygonal Region of Interest for Airborne Surveillance Applications

被引:0
作者
Vinod, Jithin [1 ]
Dhipu, T. M. [2 ]
Rajesh, R. [2 ]
机构
[1] New Horizon Coll Engn, Comp Sci & Engn, Bengaluru, India
[2] Ctr Airborne Syst, Bengaluru, India
来源
2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024 | 2024年
关键词
Computer Vision; Deep Learning; Object detection; Region of Interest; YOLO;
D O I
10.1109/SPACE63117.2024.10668012
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Object detection in airborne surveillance is constrained by low size, weight and power. Under these constraints, detection speeds can be improved using a Region of Interest (ROI) based approach. This paper outlines an ROI-based detection utilizing the You Only Look Once (YOLO) model, augmented with mouse interaction and polygon area functions. Mouse interaction enables user-driven selection of ROIs for concentrating on specific regions of interest. Additionally, polygon area function facilitates the creation of irregularly shaped ROIs, for object tracking. Our experimental findings illustrate the efficacy of the suggested approach in achieving accurate ROI detection while maintaining the real-time performance.
引用
收藏
页码:901 / 905
页数:5
相关论文
共 50 条
  • [1] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [2] YOLO-Based Object Detection and Tracking for Autonomous Vehicles Using Edge Devices
    Azevedo, Pedro
    Santos, Vitor
    ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2023, 589 : 297 - 308
  • [3] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [4] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [5] A Yolo-based Violence Detection Method in IoT Surveillance Systems
    Gao, Hui
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 143 - 149
  • [6] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [7] YOLO-Based Object Detection in Industry 4.0 Fischertechnik Model Environment
    Schneidereit, Slavomira
    Yarahmadi, Ashkan Mansouri
    Schneidereit, Toni
    Breuss, Michael
    Gebauer, Marc
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 1 - 20
  • [8] Development of YOLO-based Model for Fall Detection in IoT Smart Home Applications
    Gao, Pengcheng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 1118 - 1125
  • [9] A Yolo-based object monitoring approach for smart shops surveillance system
    Xu, Wei
    Zhai, Yujin
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3163 - 3170
  • [10] Object detection using YOLO: challenges, architectural successors, datasets and applications
    Tausif Diwan
    G. Anirudh
    Jitendra V. Tembhurne
    Multimedia Tools and Applications, 2023, 82 : 9243 - 9275