Deriving Optimal Skew Polycyclic Codes Over Fq Using Skew Polycyclic Linear Codes Over R = R1 x R2 x R3

被引:0
作者
Makhlouf, Sassia [1 ]
Chatouh, Karima [1 ]
机构
[1] Batna 1 Univ, Fac Econ Commercial & Management Sci, Lab Applicat Math Comp Sci & Elect, Batna, Algeria
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
linear codes; skew polycyclic codes; dual codes; gray images; additive rings;
D O I
10.37256/cm.5420245611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the theory and applications of linear and skew polycyclic codes over the ring R = 1 x 2 x 3, where i (0 <= i <= 3) are finite commutative rings. We first explore the structure of linear codes over R, establishing foundational properties. Then, we introduce skew polycyclic codes over R, a generalization of polycyclic code over a finite field. We delve into the algebraic structure of these codes and demonstrate how they differ from their classical counterparts. Furthermore, we examine the dual codes of skew polycyclic codes over R, providing necessary and sufficient conditions for a code to be self-dual. Finally, we investigate the Gray images of skew polycyclic codes over R, focusing on codes with optimal parameters. We provide explicit construction of Gray maps that yield images with good properties, such as large minimum distances and favorable automorphism groups. These results have potential applications in constructing new classes of error-correcting codes. We demonstrate this through an example of skew polycyclic codes applied in secret sharing schemes.
引用
收藏
页码:5641 / 5665
页数:25
相关论文
共 21 条
[1]  
Chatouh K, Guenda K, Gulliver TA, Noui L., On some classes of linear codes over Z<sub>2</sub>Z<sub>4</sub> and their covering radii, Journal of Applied Mathematics and Computing, 53, 1-2, pp. 201-222, (2017)
[2]  
Chatouh K, Guenda K, Gulliver TA, Noui L., Simplex and MacDonald codes over R<sub>q</sub>, Journal of Applied Mathematics and Computing, 55, pp. 455-478, (2017)
[3]  
Chatouh K, Guenda K, Gulliver TA., New classes of codes over R<sub>q, p,m</sub> = Z<sub>p</sub>m[u<sub>1</sub>, u<sub>2</sub>, ···, u<sub>q</sub> ]/ ⟨u<sup>2</sup>i = 0, u<sub>i</sub>u<sub>j</sub> = u<sub>j</sub> u<sub>i</sub>⟩ and their applications, Computational and Applied Mathematics, 39, 3, (2020)
[4]  
Hammons AR, Kumar PV, Calderbank AR, Sloane NJA, Sole P., The Z<sub>4</sub>-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Transactions on Information Theory, 40, 2, pp. 301-319, (1994)
[5]  
Chatouh K., Some codes over R = R<sub>1</sub>R<sub>2</sub>R<sub>3</sub> and their applications in secret sharing schemes, Afrika Matematika, 35, 1, (2024)
[6]  
Melakhessou A, Chatouh K., DNA multi-secret sharing schemes based on linear codes over Z<sub>4</sub> × R, Journal of Applied Mathematics and Computing, 69, pp. 4833-4853, (2023)
[7]  
Siap I, Abualrub T, Aydin N, Seneviratne P., Skew cyclic codes of arbitrary length, International Journal of Information and Coding Theory, 2, 1, pp. 10-20, (2011)
[8]  
Boulagouaz M, Leroy A., σ − δ Codes, (2013)
[9]  
Ma F, Gao J, Li J, Fu FW., (σ, δ)-Skew quasi-cyclic codes over the ring Z<sub>4</sub> +uZ<sub>4</sub>, Cryptography and Communications, 13, 2, pp. 307-320, (2021)
[10]  
Tsfasman M, VladuT S, Tsfasman M, Vladut S., Codes and Their Parameters, (1954)