Cosmological particle production in a quantum field simulator as a quantum mechanical scattering problem

被引:2
作者
Schmidt, Christian F. [1 ]
Parra-Lopez, Alvaro [2 ,3 ]
Tolosa-Simeon, Mireia [4 ]
Sparn, Marius [5 ]
Kath, Elinor [5 ]
Liebster, Nikolas [5 ]
Duchene, Jelte [5 ]
Strobel, Helmut [5 ]
Oberthaler, Markus K. [5 ]
Floerchinger, Stefan [1 ]
机构
[1] Friedrich Schiller Univ Jena, Theoret Phys Inst, Max Wien Pl 1, D-07743 Jena, Germany
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor, Ciudad Univ, Madrid 28040, Spain
[3] Univ Complutense Madrid, Fac Ciencias Fis, IPARCOS, Ciudad Univ, Madrid 28040, Spain
[4] Ruhr Univ Bochum, Inst Theoret Phys 3, Bochum, Germany
[5] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
关键词
GAUGE-INVARIANCE; ANALOG; CREATION; PERTURBATIONS; INFLATION; UNIVERSE; ATOMS;
D O I
10.1103/PhysRevD.110.123523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The production of quantum field excitations or particles in cosmological spacetimes is a hallmark prediction of curved quantum field theory. The generation of cosmological perturbations from quantum fluctuations in the early Universe constitutes an important application. The problem can be quantum-simulated in terms of structure formation in an interacting Bose-Einstein condensate (BEC) with time-dependent s-wave scattering length. Here, we explore a mapping between cosmological particle production in general (D + 1)-dimensional spacetimes and scattering problems described by the nonrelativistic stationary Schrodinger equation in one dimension. Through this mapping, intuitive explanations for emergent spatial structures in both the BEC and the cosmological system can be obtained for analogue cosmological scenarios that range from power-law expansions to periodic modulations. The investigated cosmologies and their scattering analogs are tuned to be implemented in a (2 thorn 1)-dimensional quantum field simulator.
引用
收藏
页数:34
相关论文
共 115 条
[21]   Friedmann's equations in all dimensions and Chebyshev's theorem [J].
Chen, Shouxin ;
Gibbons, Gary W. ;
Li, Yijun ;
Yang, Yisong .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (12)
[22]   Goals and opportunities in quantum simulation [J].
Cirac, J. Ignacio ;
Zoller, Peter .
NATURE PHYSICS, 2012, 8 (04) :264-266
[23]   Fundamental Solution of Laplace's Equation in Hyperspherical Geometry [J].
Cohl, Howard S. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[24]   Observation of thermal Hawking radiation and its temperature in an analogue black hole [J].
de Nova, Juan Ramon Munoz ;
Golubkov, Katrine ;
Kolobov, Victor I. ;
Steinhauer, Jeff .
NATURE, 2019, 569 (7758) :688-+
[25]   Entanglement from superradiance and rotating quantum fluids of light [J].
Delhom, Adria ;
Guerrero, Killian ;
Cabrera, Paula Calizaya ;
Falque, Kevin ;
Bramati, Alberto ;
Brady, Anthony J. ;
Jacquet, Maxime J. ;
Agullo, Ivan .
PHYSICAL REVIEW D, 2024, 109 (10)
[26]  
Dodelson S., 2003, Modern cosmology
[27]  
Donnelly H., 2002, Minimal Surfaces, Geometric Analysis and Symplectic Geometry, V34, P15
[28]   A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab [J].
Eckel, S. ;
Kumar, A. ;
Jacobson, T. ;
Spielman, I. B. ;
Campbell, G. K. .
PHYSICAL REVIEW X, 2018, 8 (02)
[29]  
Falque K, 2024, Arxiv, DOI arXiv:2311.01392
[30]   Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas [J].
Fedichev, PO ;
Fischer, UR .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)