Nonconforming virtual element method for an incompressible miscible displacement problem in porous media

被引:0
作者
Kumar, Sarvesh [1 ]
Shylaja, Devika [2 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, India
[2] BITS Pilani, Dept Math, KK Birla Goa Campus,NH 17B, Zuarinagar 403726, Goa, India
关键词
Miscible fluid flow; Coupled elliptic-parabolic problem; Convergence analysis; Virtual element methods; MIXED FINITE-ELEMENT; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; CONVERGENCE ANALYSIS; FLUID-FLOWS; APPROXIMATION; SCHEMES;
D O I
10.1016/j.camwa.2025.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a priori error estimates of the miscible displacement of one incompressible fluid by another through a porous medium characterized by a coupled system of nonlinear elliptic and parabolic equations. The study utilizes the H(div) conforming virtual element method for the approximation of the velocity, while a non-conforming virtual element approach is employed for the concentration. The pressure is discretised using the standard piecewise discontinuous polynomial functions. These spatial discretization techniques are combined with a backward Euler difference scheme for time discretization. The article also includes numerical results that validate the theoretical estimates presented.
引用
收藏
页码:153 / 179
页数:27
相关论文
共 43 条
[21]   A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems [J].
Dassi, F. ;
Lovadina, C. ;
Visinoni, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 364
[22]   THE NONCONFORMING VIRTUAL ELEMENT METHOD [J].
de Dios, Blanca Ayuso ;
Lipnikov, Konstantin ;
Manzini, Gianmarco .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2016, 50 (03) :879-904
[23]  
DiPietro DA, 2012, MATH APPL-BERLIN, V69, P1, DOI 10.1007/978-3-642-22980-0
[24]  
DOUGLAS J, 1983, RAIRO-ANAL NUMER-NUM, V17, P17
[26]   Unified Convergence Analysis of Numerical Schemes for a Miscible Displacement Problem [J].
Droniou, Jerome ;
Eymard, Robert ;
Prignet, Main ;
Talbo, Kyle S. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (02) :333-374
[27]   GALERKIN METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS IN POROUS-MEDIA [J].
EWING, RE ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (03) :351-365
[28]  
Ewing Richard E., 1984, Mathematical Methods in Energy Research, Laramie, Wyo., 1982/1983, P40
[29]   ON EXISTENCE AND UNIQUENESS RESULTS FOR A COUPLED SYSTEM MODELING MISCIBLE DISPLACEMENT IN POROUS-MEDIA [J].
FENG, XB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (03) :883-910
[30]   Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media [J].
Guo, Hui ;
Yu, Fan ;
Yang, Yang .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (02) :615-633