Nonconforming virtual element method for an incompressible miscible displacement problem in porous media

被引:0
作者
Kumar, Sarvesh [1 ]
Shylaja, Devika [2 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, India
[2] BITS Pilani, Dept Math, KK Birla Goa Campus,NH 17B, Zuarinagar 403726, Goa, India
关键词
Miscible fluid flow; Coupled elliptic-parabolic problem; Convergence analysis; Virtual element methods; MIXED FINITE-ELEMENT; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; CONVERGENCE ANALYSIS; FLUID-FLOWS; APPROXIMATION; SCHEMES;
D O I
10.1016/j.camwa.2025.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a priori error estimates of the miscible displacement of one incompressible fluid by another through a porous medium characterized by a coupled system of nonlinear elliptic and parabolic equations. The study utilizes the H(div) conforming virtual element method for the approximation of the velocity, while a non-conforming virtual element approach is employed for the concentration. The pressure is discretised using the standard piecewise discontinuous polynomial functions. These spatial discretization techniques are combined with a backward Euler difference scheme for time discretization. The article also includes numerical results that validate the theoretical estimates presented.
引用
收藏
页码:153 / 179
页数:27
相关论文
共 43 条
[1]  
ADAMS R. A., 1975, Pure Appl. Math., V65
[2]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[3]   Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods [J].
Amaziane, Brahim ;
El Ossmani, Mustapha .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) :799-832
[4]   DISCONTINUOUS GALERKIN FINITE ELEMENT CONVERGENCE FOR INCOMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEMS OF LOW REGULARITY [J].
Bartels, Soeren ;
Jensen, Max ;
Mueller, Ruediger .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3720-3743
[5]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[6]   Some Estimates for Virtual Element Methods [J].
Brenner, Susanne C. ;
Guan, Qingguang ;
Sung, Li-Yeng .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :553-574
[7]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[8]   Conforming and nonconforming virtual element methods for elliptic problems [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Sutton, Oliver J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1317-1354
[9]   STUDY OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE PEACEMAN MODEL [J].
Chainais-Hillairet, C. ;
Krell, S. ;
Mouton, A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2928-A2952
[10]   Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media [J].
Chainais-Hillairet, Claire ;
Droniou, Jerome .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :2228-2258