Comparative transcriptome and metabolome analysis of sweet potato (Ipomoea batatas (L.) Lam.) tuber development

被引:0
|
作者
Lin, Yanhui [1 ]
Li, Yapeng [1 ,2 ]
Zhu, Honglin [1 ]
Tang, Liqiong [1 ]
Xu, Jing [1 ]
机构
[1] Hainan Acad Agr Sci, Inst Food Crops, Hainan Key Lab Crop Genet & Breeding, Haikou, Peoples R China
[2] Hainan Acad Agr Sci, Sanya Res Inst, Sanya, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
sweet potato; RNA-seq; metabolome; anthocyanin content; starch content; carotenoid content; RNA-SEQ EXPERIMENTS; STARCH; ORANGE; MODELS;
D O I
10.3389/fpls.2024.1511602
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.Methods To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).Results RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated. A total of 9118 DEGs were divided into three categories during the same developmental period. A total of 1566 metabolites were detected, which were mainly divided into 12 categories. DEGs and differentially regulated metabolites (DRMs) were significantly enriched in the starch and sucrose metabolism and flavonoid biosynthesis pathways. The DEGs associated with the flavonoid pathway showed greater expression with the development of tubers, with the highest expression occurring at 130 d; chalcone isomerase (CHI) was a key gene associated with 11 flavonoid compounds. The DEGs associated with the starch pathway presented relatively low expression during the development of tubers, with the highest expression occurring at 70 d; UDP-glucose pyrophosphorylase 2 (UPG2) and glycogen synthase (glgA) were able to regulate the key genes of 8 metabolites related to the starch biosynthesis pathway. The anthocyanin content is directly related to changes in the content of peonidin-3-O-(6"-O-feruloyl)sophoroside-5-O-glucoside, which is regulated by the IbCHI gene. The abundance of this starch is directly related to changes in the content of D-glucose 6-phosphate and is regulated by the IbUGP2 and IbglgA genes. A total of 14 candidate genes related to starch, carotenoids and anthocyanins in sweet potato tubers, including the IbCHI, IbUGP2 and IbglgA genes, were identified via weighted correlation network analysis (WGCNA).Conclusion This research provides fresh insights into the levels of anthocyanins, starch, and carotenoids throughout the growth of sweet potato tubers and sheds light on the potential regulatory pathways and candidate genes involved in this developmental progression.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Uncontrolled storage behaviour of sweet potato (Ipomoea batatas L. Lam)
    Chattopadhyay, A
    Chakraborty, I
    Kumar, PR
    Nanda, MK
    Sen, H
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2006, 43 (01): : 41 - 45
  • [32] Phosphate fertiliser alters carboxylates and bacterial communities in sweet potato (Ipomoea batatas(L.) Lam.) rhizosheaths
    Minemba, David
    Martin, Belinda C.
    Ryan, Megan H.
    Veneklaas, Erik J.
    Gleeson, Deirdre B.
    PLANT AND SOIL, 2020, 454 (1-2) : 245 - 260
  • [33] Identification and functional characterization of a flavonol synthase gene from sweet potato [Ipomoea batatas (L.) Lam.]
    Kou, Meng
    Li, Chen
    Song, Weihan
    Shen, Yifan
    Tang, Wei
    Zhang, Yungang
    Wang, Xin
    Yan, Hui
    Gao, Runfei
    Ahmad, Muhammad Qadir
    Li, Qiang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [34] Unlocking the nutritional and antioxidant potential of sweet potato, Ipomoea batatas (L.) Lam. genotypes for human health
    Mounika, Vadde
    Singh, Siddhartha
    Kisan, Nimbolkar Prashanth
    Raja, P.
    Reddy, I. V. Srinivas
    Gowd, Talamarla Yeswanth Mahidar
    ANNALS OF PHYTOMEDICINE-AN INTERNATIONAL JOURNAL, 2024, 13 (02): : 631 - 639
  • [35] Effects of Baking and Boiling on the Nutritional and Antioxidant Properties of Sweet Potato [Ipomoea batatas (L.) Lam.] Cultivars
    Dincer, Cuneyt
    Karaoglan, Mert
    Erden, Fidan
    Tetik, Nedim
    Topuz, Ayhan
    Ozdemir, Feramuz
    PLANT FOODS FOR HUMAN NUTRITION, 2011, 66 (04) : 341 - 347
  • [36] Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification
    Pennycooke, JC
    Towill, LE
    PLANT CELL REPORTS, 2000, 19 (07) : 733 - 737
  • [37] Progeny Evaluation of Some Sweet Potato [Ipomoea batatas (L.) Lam.] Breeding Lines in South Africa
    Zulu, L.
    Adebola, P. O.
    Shegro, A.
    Laurie, S. M.
    Pillay, M.
    II ALL AFRICA HORTICULTURE CONGRESS, 2013, 1007 : 247 - 254
  • [38] Phenological growth stages of sweet potato (Ipomoea batatas (L.) Lam.) according to the extended BBCH scale
    Pati, Kalidas
    Kaliyappan, Raja
    Giri, Alok Kumar
    Chauhan, Vijay Bahadur Singh
    Gowda, Hanume
    Arutselvan, Rameshkumar
    Nedunchezhiyan, Maniyam
    Laxminarayana, Kuttumu
    ANNALS OF APPLIED BIOLOGY, 2024, 184 (03) : 382 - 390
  • [39] Cryoprotectants and components induce plasmolytic responses in sweet potato (Ipomoea batatas (L.) Lam.) suspension cells
    Volk, Gayle M.
    Caspersen, Ann M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2017, 53 (04) : 363 - 371
  • [40] Morphometric and colourimetric tools to dissect morphological diversity: an application in sweet potato [Ipomoea batatas (L.) Lam.]
    Amparo Rosero
    Leiter Granda
    José-Luis Pérez
    Deisy Rosero
    William Burgos-Paz
    Remberto Martínez
    Julio Morelo
    Iván Pastrana
    Esteban Burbano
    Alfredo Morales
    Genetic Resources and Crop Evolution, 2019, 66 : 1257 - 1278