PolarCAP - A deep learning approach for first motion polarity classification of earthquake waveforms

被引:8
作者
Chakraborty, Megha [1 ,2 ]
Cartaya, Claudia Quinteros [1 ]
Li, Wei [1 ]
Faber, Johannes [1 ,3 ]
Ruempker, Georg [1 ,2 ]
Stoecker, Horst [1 ,3 ,4 ,5 ]
Srivastava, Nishtha [1 ,2 ]
机构
[1] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[4] Xidian FIAS Int Joint Res Ctr, Giersch Sci Ctr, D-60438 Frankfurt, Germany
[5] GSI Helmholtzzentrum Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
来源
ARTIFICIAL INTELLIGENCE IN GEOSCIENCES | 2022年 / 3卷
关键词
First-motion polarity; Earthquake waveforms; Convolutional;
D O I
10.1016/j.aiig.2022.08.001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 32 条
  • [11] P-wave first-motion polarity determination of waveform data in western Japan using deep learning
    Hara, Shota
    Fukahata, Yukitoshi
    Iio, Yoshihisa
    [J]. EARTH PLANETS AND SPACE, 2019, 71 (01):
  • [12] A new method for determining first-motion focal mechanisms
    Hardebeck, JL
    Shearer, PM
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2002, 92 (06) : 2264 - 2276
  • [13] Kingma D P., 2014, P INT C LEARN REPR
  • [14] Kiranyaz S., 2015, Convolutional NeuRal Networks for Patient-specific Ecg Classification, P2608, DOI DOI 10.1109/EMBC.2015.7318926
  • [15] Li W., 2022, arXiv, DOI [10.48550/ARXIV.2204.02870, DOI 10.48550/ARXIV.2204.02870]
  • [16] Li W, 2021, Arxiv, DOI arXiv:2109.02567
  • [17] ARRU Phase Picker: Attention Recurrent-Residual U-Net for Picking Seismic P- and S-Phase Arrivals
    Liao, Wu-Yu
    Lee, En-Jui
    Mu, Dawei
    Chen, Po
    Rau, Ruey-Juin
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (04) : 2410 - 2428
  • [18] An overview of deep learning in medical imaging focusing on MRI
    Lundervold, Alexander Selvikvag
    Lundervold, Arvid
    [J]. ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02): : 102 - 127
  • [19] Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking
    Mousavi, S. Mostafa
    Ellsworth, William L.
    Zhu, Weiqiang
    Chuang, Lindsay Y.
    Beroza, Gregory C.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [20] A Machine-Learning Approach for Earthquake Magnitude Estimation
    Mousavi, S. Mostafa
    Beroza, Gregory C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (01)