PolarCAP - A deep learning approach for first motion polarity classification of earthquake waveforms

被引:8
作者
Chakraborty, Megha [1 ,2 ]
Cartaya, Claudia Quinteros [1 ]
Li, Wei [1 ]
Faber, Johannes [1 ,3 ]
Ruempker, Georg [1 ,2 ]
Stoecker, Horst [1 ,3 ,4 ,5 ]
Srivastava, Nishtha [1 ,2 ]
机构
[1] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[4] Xidian FIAS Int Joint Res Ctr, Giersch Sci Ctr, D-60438 Frankfurt, Germany
[5] GSI Helmholtzzentrum Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
来源
ARTIFICIAL INTELLIGENCE IN GEOSCIENCES | 2022年 / 3卷
关键词
First-motion polarity; Earthquake waveforms; Convolutional;
D O I
10.1016/j.aiig.2022.08.001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 32 条
  • [1] Batista GE., 2004, ACM SIGKDD EXPLOR NE, V6, P20, DOI [DOI 10.1145/1007730.1007735, 10.1145/1007730.1007735, 10.1145/1007730.1007735.2]
  • [2] Bormann P., 2014, Data Analysis and Seismogram inTerpretation, P1
  • [3] Using CNN Features to Better Understand What Makes Visual Artworks Special
    Brachmann, Anselm
    Barth, Erhardt
    Redies, Christoph
    [J]. FRONTIERS IN PSYCHOLOGY, 2017, 8
  • [4] Chakraborty M., 2021, arXiv, DOI DOI 10.48550/ARXIV.2112.07551
  • [5] Chakraborty M., 2021, EGU GEN ASS C, DOI [10.5194/egusphere-egu21-15941, DOI 10.5194/EGUSPHERE-EGU21-15941]
  • [6] CREIME-A Convolutional Recurrent Model for Earthquake Identification and Magnitude Estimation
    Chakraborty, Megha
    Fenner, Darius
    Li, Wei
    Faber, Johannes
    Zhou, Kai
    Ruempker, Georg
    Stoecker, Horst
    Srivastava, Nishtha
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (07)
  • [7] Charles P., 2013, Project title
  • [8] PhasePApy: A Robust Pure Python']Python Package for Automatic Identification of Seismic Phases
    Chen, Chen
    Holland, Austin A.
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2016, 87 (06) : 1384 - 1396
  • [9] Chen YK, 2020, GEOPHYS J INT, V222, P1750, DOI [10.1093/gji/ggaa186, 10.1093/gji/ggx420]
  • [10] Cianetti S., 2021, Instance the Italian seismic dataset for machine learning, seismic waveforms and associated metadata, DOI [10.13127/instance, DOI 10.13127/INSTANCE]