A new APSO-SPC method for parameter identification problem with uncertainty caused by random measurement errors

被引:0
作者
Zhong, Peng [1 ]
Wu, Xuanlong [1 ]
Zhu, Li [1 ]
Yang, Aohao [1 ]
机构
[1] Dalian Univ Technol, Sch Mech & Aerosp Engn, State Key Lab Struct Anal Optimizat & CAE Software, Dalian 116024, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
uncertainty analysis; parameter identification; measurement errors; stochastic perturbation collocation method; heterogeneous comprehensive learning particle swarm optimization; OPTIMIZATION; INTEGRATION; MODELS;
D O I
10.3934/math.2025179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In parameter identification problem, errors are common in measurement data, resulting in uncertainty in the identified parameters. Traditional deterministic methods cannot address this uncertainty. A novel approach, which integrates an advanced particle swarm optimization algorithm (APSO) and the stochastic perturbation collocation method (SPC), is proposed to address this issue, called APSO-SPC for short. The APSO algorithm improves the heterogeneous comprehensive learning particle swarm optimization algorithm (HCLPSO) based on the dynamic evolution sequence (DES), improving computational efficiency for each deterministic parameter identification process. Furthermore, the SPC method accurately estimates the means and standard deviations of uncertain parameters. Three numerical examples demonstrate the accuracy and efficiency of the APSO-SPC method in assessing parameter uncertainties caused by random measurement errors.
引用
收藏
页码:3848 / 3865
页数:18
相关论文
共 50 条
[1]   Dynamic parameter identification of cold-formed storage rack systems using shaking table test [J].
AL-Gaadi, Fuad M. A. ;
Alemdar, Fatih .
RESULTS IN ENGINEERING, 2024, 22
[2]   Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review [J].
Ankur, Nitin ;
Singh, Navdeep .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
[3]   The role of surrogate models in the development of digital twins of dynamic systems [J].
Chakraborty, S. ;
Adhikari, S. ;
Ganguli, R. .
APPLIED MATHEMATICAL MODELLING, 2021, 90 :662-681
[4]   Effect of clearance on measuring accuracy in two-dimensional piston flowmeter [J].
Ding, Chuan ;
Pei, Sheng-xiang ;
Chen, Hao-qi ;
Huang, Yu ;
Meng, Bin ;
Liu, Li .
FLOW MEASUREMENT AND INSTRUMENTATION, 2024, 99
[5]   Effects of measurement noise on modal parameter identification [J].
Dorvash, S. ;
Pakzad, S. N. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (06)
[6]   Adaptive perturbation method for optimal control problem governed by stochastic elliptic PDEs [J].
Feng, Mengya ;
Sun, Tongjun .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (02)
[7]   A novel multi-physics coupling model for the stochastic analysis of phased arrays considering material spatial uncertainty [J].
Feng, S. Z. ;
Sun, Q. J. ;
Xiao, S. ;
Han, X. ;
Li, Y. B. ;
Li, Z. X. .
APPLIED MATHEMATICAL MODELLING, 2024, 128 :707-722
[8]  
Gao Q, 2012, STRUCT ENG MECH, V43, P1
[9]   Photovoltaic mono and bifacial module/string electrical model parameters identification and validation based on a new differential evolution bee colony optimizer [J].
Hachana, Oussama ;
Aoufi, Belkacem ;
Tina, Giuseppe Marco ;
Sid, Mohamed Amine .
ENERGY CONVERSION AND MANAGEMENT, 2021, 248
[10]   Parameter identification of nonlinear rotor-bearing system based on improved kriging surrogate model [J].
Han, Fang ;
Guo, Xinglin ;
Mo, Changki ;
Gao, Haiyang ;
Hou, Peijun .
JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (05) :794-807