Characterization of matrices satisfying the reverse order law for the Moore-Penrose pseudoinverse

被引:0
作者
Kedzierski, Oskar [1 ,2 ]
机构
[1] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
[2] NASK, Dept Linear Algebra, Kolska 12, PL-01045 Warsaw, Poland
关键词
Moore-Penrose pseudoinverse; reverse-order law; Greville condition;
D O I
10.1080/03081087.2025.2469158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any complex matrix A, there exists a unique complex matrix $ {A}<^>\dag \! $ A dagger, called the Moore-Penrose pseudoinverse, such that the following conditions, known as the Penrose conditions, hold: $ A{A}<^>\dag \!A=A $ AA dagger A=A, $ {A}<^>\dag \!A{A}<^>\dag \!={A}<^>\dag \! $ A dagger AA dagger=A dagger, $ A{A}<^>\dag \! $ AA dagger is Hermitian and $ {A}<^>\dag \!A $ A dagger A is Hermitian. However, the condition $ {( AB )}<^>\dag \!={B}<^>\dag \!{A}<^>\dag \! $ (AB)dagger=B dagger A dagger, known as the reverse-order law, does not hold in general. We provide a new constructive characterization of matrices that satisfy the reverse-order law. In particular, for a given matrix A, we construct another matrix B, of arbitrary compatible size and rank, in terms of the singular value decomposition of matrix A. Moreover, we show that any matrix B satisfying the reverse-order law for a fixed A arises from a similar construction. As a consequence, we show that $ {B}<^>\dag \!{A}<^>\dag \! $ B dagger A dagger is the Moore-Penrose pseudoinverse of AB if and only if $ {( BB<^>* )}<^>\dag \!{( A<^>*A )}<^>\dag \! $ (BB & lowast;)dagger(A & lowast;A)dagger is the Moore-Penrose pseudoinverse of $ A<^>*ABB<^>* $ A & lowast;ABB & lowast;. In addition, we prove similar equivalent characterizations and conditions for $ {B}<^>\dag \!{A}<^>\dag \! $ B dagger A dagger being a $ \{1,2\} $ {1,2}-, $ \{1,2,3\} $ {1,2,3}-, or $ \{1,2,4\} $ {1,2,4}-inverse of AB, that is, a matrix that satisfies only some of the four Penrose conditions. These characterizations provide geometric insight in terms of the principal angles between the column spaces of $ A<^>* $ A & lowast; and B.
引用
收藏
页数:20
相关论文
共 12 条
  • [1] SERIES AND PARALLEL ADDITION OF MATRICES
    ANDERSON, WN
    DUFFIN, RJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (03) : 576 - &
  • [2] Ben-Israel A., 2003, Generalized inverses: theory and applications, V15
  • [3] NUMERICAL METHODS FOR COMPUTING ANGLES BETWEEN LINEAR SUBSPACES
    BJORCK, A
    GOLUB, GH
    [J]. MATHEMATICS OF COMPUTATION, 1973, 27 (123) : 579 - 594
  • [4] Golub G. H., 1995, The canonical correlations of matrix pairs and their numerical computation
  • [5] NOTE ON GENERALIZED INVERSE OF A MATRIX PRODUCT
    GREVILLE, TN
    [J]. SIAM REVIEW, 1966, 8 (04) : 518 - &
  • [6] Hogben Leslie, 2014, Handbook of linear algebra, Vsecond
  • [7] Horn RA., 2012, Matrix Analysis, V2, DOI [10.1017/cbo9780511810817, 10.1017/CBO9780511810817]
  • [8] Lang S., 2002, Algebra, V211
  • [9] Penrose R., 1955, Mathematical Proceedings of the Cambridge Philosophical Society, V51, P406, DOI [DOI 10.1017/S0305004100030401, 10.1017/S0305004100030401]
  • [10] Schwerdtfeger H., 1968, Linear Algebra Appl, V1, P325, DOI [10.1016/0024-3795(68)90012-8, DOI 10.1016/0024-3795(68)90012-8]