Well-posedness and analyticity for quasi-geostrophic equation in the Besov-Morrey spaces characterized by semi-group

被引:1
|
作者
Khaider, Hassan [1 ]
Azanzal, Achraf [1 ]
Allalou, Chakir [1 ]
Melliani, Said [1 ]
机构
[1] Sultan Moulay Slimane Univ, FST Beni Mellal, Lab LMACS, Beni Mellal, Morocco
关键词
Quasi-geostrophic equation; Besov-Morrey spaces characterized by the semigroup; Global well-posedness; Analyticity of the solutions; GEVREY REGULARITY;
D O I
10.2298/FIL2417237K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we show the existence and uniqueness, the analyticity of the solutions and the decay estimates of the solutions of the quasi-geostrophic equation (QG) in the Besov-Morrey spaces charterized by the semigroup T-alpha := e(-t(-triangle)alpha), noted by N-p,lambda(s). If we assume that the initial data theta 0 are small and belong to the Besov-Morrey critical spaces, we obtain the global well-posedness results of the QG equation.
引用
收藏
页码:6237 / 6244
页数:8
相关论文
共 50 条
  • [1] The well-posedness of the surface quasi-geostrophic equations in the Besov-Morrey spaces
    Xu, Jiang
    Tan, Yanfei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 : 60 - 71
  • [2] Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces
    Qian Zhang
    Yehua Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 53 - 70
  • [3] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [4] WELL-POSEDNESS OF SOLUTIONS FOR THE 2D STOCHASTIC QUASI-GEOSTROPHIC EQUATION IN CRITICAL FOURIER-BESOV-MORREY SPACES
    Khaider, Hassan
    Azanzal, Achraf
    Raji, Abderrahmane
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (74)
  • [5] Local well-posedness for the quasi-geostrophic equations in Besov-Lorentz spaces
    Zhang, Qian
    Zhang, Yehua
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 53 - 70
  • [6] Well-posedness of quasi-geostrophic equations with data in Besov-Q spaces
    Li, Pengtao
    Yang, Qixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 243 - 258
  • [7] Global well-posedness and analyticity for the fractional stochastic Hall-magnetohydrodynamics system in the Besov-Morrey spaces
    Khaider, Hassan
    Azanzal, Achraf
    Raji, Abderrahmane
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (03) : 583 - 594
  • [8] The global well-posedness of the modified quasi-geostrophic equation in frequency spaces
    Ru, Shaolei
    Chen, Jiecheng
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 1 - 4
  • [9] A uniform Besov boundedness and the well-posedness of the generalized dissipative quasi-geostrophic equation in the critical Besov space
    Chen, Yanping
    Guo, Zihua
    Tian, Tian
    FORUM MATHEMATICUM, 2024, 36 (02) : 403 - 416
  • [10] Well-posedness for the surface quasi-geostrophic front equation
    Ai, Albert
    Avadanei, Ovidiu-Neculai
    NONLINEARITY, 2024, 37 (05)