NONLINEAR NONLOCAL ψ-CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE

被引:1
作者
Liang, Jin [1 ]
Mu, Yunyi [2 ]
Xiao, Ti-jun [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Dianji Univ, Sch Arts & Sci, Shanghai 201306, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
基金
中国国家自然科学基金;
关键词
Nonlinear; psi-Caputo fractional derivative; integro-differential; nonlocal; Darbo-type theorem; solvability; DIFFERENTIAL-EQUATIONS; KNASTER-KURATOWSKI; THEOREM; EXISTENCE; MAPPINGS; RESPECT; SPACES;
D O I
10.3934/dcdss.2024205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we investigate the nonlocal Cauchy problem for a class of nonlinear fractional V)-Caputo integro-differential equations of Sobolev type in Banach spaces. We first establish some new Darbo-type fixed point theorems, and then we present a solvability theorem for the nonlocal Cauchy problem for such nonlinear fractional equations of Sobolev type with the help of the new Darbo-type fixed point theorems. Moreover, we illustrate the applicability of our theoretical results with two examples.
引用
收藏
页数:21
相关论文
共 52 条
[1]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[2]   On new existence results for fractional integro-differential equations with impulsive and integral conditions [J].
Anguraj, A. ;
Karthikeyan, P. ;
Rivero, M. ;
Trujillo, J. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) :2587-2594
[3]  
Aronszajn N., 1956, Pacific J. Math, V6, P405, DOI [10.2140/pjm.1956.6.405, DOI 10.2140/PJM.1956.6.405]
[4]  
Banach S., 1922, Fund. Math, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[5]  
Banas J., 1980, Measure of Noncompactness in Banach Spaces
[6]   SOME FURTHER GENERALIZATIONS OF KNASTER-KURATOWSKI-MAZURKIEWICZ THEOREM AND MINIMAX INEQUALITIES [J].
BARDARO, C ;
CEPPITELLI, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 132 (02) :484-490
[7]  
Berzig M, 2013, arXiv
[8]   Invariance of the n dimensional field [J].
Brouwer, LEJ .
MATHEMATISCHE ANNALEN, 1912, 72 :55-56
[9]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[10]   New generalizations of Darbo's fixed point theorem [J].
Cai, Longsheng ;
Liang, Jin .
FIXED POINT THEORY AND APPLICATIONS, 2015,