Validating MEG estimated resting-state connectome with intracranial EEG

被引:0
作者
Afnan, Jawata [1 ,2 ,3 ]
Cai, Zhengchen [3 ]
Lina, Jean-Marc [4 ,5 ,6 ]
Abdallah, Chifaou [1 ,2 ,3 ,7 ]
Pellegrino, Giovanni [8 ]
Arcara, Giorgio [9 ]
Khajehpour, Hassan [7 ]
Frauscher, Birgit [7 ]
Gotman, Jean [3 ]
Grova, Christophe [1 ,3 ,4 ,10 ,11 ]
机构
[1] McGill Univ, Biomed Engn Dept, Multimodal Funct Imaging Lab, Montreal, PQ H3A 2B4, Canada
[2] McGill Univ, Integrated Program Neurosci, Montreal, PQ H3A 1A1, Canada
[3] McGill Univ, Montreal Neurol Inst, Dept Neurol & Neurosurg, Montreal, PQ H3A 2B4, Canada
[4] Ctr Rech Math, Physnum Team, Montreal, PQ, Canada
[5] Ecole Technol Super, Elect Engn Dept, Montreal, PQ H3C 1K3, Canada
[6] Sacre Coeur Hosp, Ctr Adv Res Sleep Med, Montreal, PQ, Canada
[7] Duke Univ, Sch Med, Dept Neurol, Analyt Neurophysiol Lab, Durham, NC USA
[8] Western Univ, Schulich Sch Med & Dent, Epilepsy Program, London, ON N6A 5C1, Canada
[9] IRCCS San Camillo Hosp, Brain Imaging & Neural Dynam Res Grp, Venice, Italy
[10] Concordia Univ, Dept Phys, Multimodal Funct Imaging Lab, Montreal, PQ, Canada
[11] Concordia Univ, Concordia Sch Hlth, Montreal, PQ, Canada
来源
NETWORK NEUROSCIENCE | 2025年 / 9卷 / 01期
关键词
MEG source imaging; Intracranial EEG; Connectivity; Source leakage; Resting state connectome; SOURCE LOCALIZATION; PHASE-SYNCHRONIZATION; BRAIN; CONNECTIVITY; MAGNETOENCEPHALOGRAPHY; NETWORKS; OSCILLATIONS; EPILEPSY; FLUCTUATIONS; RESOLUTION;
D O I
10.1162/netn_a_00441
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ill-posed nature and low spatial resolution of EEG/magnetoencephalography (MEG) source imaging affects functional connectivity estimates, which become more complicated in the resting state due to the low signal-to-noise ratio. Several connectivity metrics have been proposed to address source leakage by removing zero-lag connectivity, although this can eliminate true neuronal zero-lag connections. Intracranial EEG (iEEG) is the gold standard for validating noninvasive measurements. In this study, we validated MEG-estimated connectivity for healthy subjects using the iEEG atlas of normal brain activity (Frauscher et al., 2018) as ground truth at a group level. We employed two amplitude-based metrics and two phase-based metrics. Our findings highlight how MEG connectivity compares with the iEEG atlas and provide valuable insights for resting-state EEG/MEG connectomic studies, particularly in the choice of connectivity metrics.
引用
收藏
页码:421 / 446
页数:26
相关论文
共 50 条
  • [1] Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas
    Afnan, Jawata
    von Ellenrieder, Nicolas
    Lina, Jean-Marc
    Pellegrino, Giovanni
    Arcara, Giorgio
    Cai, Zhengchen
    Hedrich, Tanguy
    Abdallah, Chifaou
    Khajehpour, Hassan
    Frauscher, Birgit
    Gotman, Jean
    Grova, Christophe
    NEUROIMAGE, 2023, 274
  • [2] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data
    Soriano, Miguel C.
    Niso, Guiomar
    Clements, Jillian
    Ortin, Silvia
    Carrasco, Sira
    Gudin, Maria
    Mirasso, Claudio R.
    Pereda, Ernesto
    FRONTIERS IN NEUROINFORMATICS, 2017, 11 : 1 - 12
  • [3] How reliable are MEG resting-state connectivity metrics?
    Colclough, G. L.
    Woolrich, M. W.
    Tewarie, P. K.
    Brookes, M. J.
    Quinn, A. J.
    Smith, S. M.
    NEUROIMAGE, 2016, 138 : 284 - 293
  • [4] Resting-state EEG and MEG biomarkers of pathological fatigue - A transdiagnostic systematic review
    Heitmann, Henrik
    Zebhauser, Paul Theo
    Hohn, Vanessa D.
    Henningsen, Peter
    Ploner, Markus
    NEUROIMAGE-CLINICAL, 2023, 39
  • [5] Brain tumors disrupt the resting-state connectome
    Hadjiabadi, Darian H.
    Pung, Leland
    Zhang, Jiangyang
    Ward, B. D.
    Lim, Woo-Taek
    Kalavar, Meghana
    Thakor, Nitish V.
    Biswal, Bharat B.
    Pathak, Arvind P.
    NEUROIMAGE-CLINICAL, 2018, 18 : 279 - 289
  • [6] Comparison between EEG and MEG of static and dynamic resting-state networks
    Cho, SungJun
    van Es, Mats
    Woolrich, Mark
    Gohil, Chetan
    HUMAN BRAIN MAPPING, 2024, 45 (13)
  • [7] Unifying Blind Separation and Clustering for Resting-State EEG/MEG Functional Connectivity Analysis
    Hirayama, Jun-ichiro
    Ogawa, Takeshi
    Hyvaerinen, Aapo
    NEURAL COMPUTATION, 2015, 27 (07) : 1373 - 1404
  • [8] Resting-state MEG measurement of functional activation as a biomarker for cognitive decline in MS
    Schoonhoven, Deborah N.
    Fraschini, Matteo
    Tewarie, Prejaas
    Uitdehaag, Bernard M. J.
    Eijlers, Anand J. C.
    Geurts, Jeroen J. G.
    Hillebrand, Arjan
    Schoonheim, Menno M.
    Stam, Cornelis J.
    Strijbis, Eva M. M.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 (14) : 1896 - 1906
  • [9] Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity
    Xu, Na
    Shan, Wei
    Qi, Jing
    Wu, Jianping
    Wang, Qun
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [10] Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy
    Grova, Christophe
    Aiguabella, Maria
    Zelmann, Rina
    Lina, Jean-Marc
    Hall, Jeffery A.
    Kobayashi, Eliane
    HUMAN BRAIN MAPPING, 2016, 37 (05) : 1661 - 1683