Prototyping of nuclear fuel assembly parts by laser powder bed fusion of Inconel 718

被引:0
作者
Jeong, Sang Guk [1 ,2 ]
Kim, Eun Seong [2 ]
Ahn, Soung Yeoul [2 ]
Chun, Joo Hong [3 ]
Ryu, Joo Young [4 ]
Woo, Han Gil [3 ]
Yoo, Sang Hun [5 ]
Kang, Suk Hoon [6 ]
Kim, Hyoung Seop [1 ,2 ,7 ,8 ]
机构
[1] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[3] KEPCO NF, Nucl Fuel Dev Sect, Daejeon 34057, South Korea
[4] Overseas Project Dev Sect, KEPCO NF, Daejeon 34057, South Korea
[5] 3D Convergence Technol Ctr, Gwangju Techno Pk, Gwangju 61003, South Korea
[6] Korea Atom Energy Res Inst KAERI, Nucl Mat Div, Daejeon 34057, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Ecomat Technol GIFT, Pohang 37673, South Korea
[8] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
MICROSTRUCTURE; EVOLUTION; METAL;
D O I
10.1016/j.pnucene.2025.105694
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Laser powder bed fusion (LPBF) technology offers various advantages, making it a promising option for the nuclear industry. This study presents an LPBF-prototyping case for its potential use in the nuclear industry. After optimizing the LPBF process and heat treatment conditions, mechanical tests were performed, including room- temperature and high-temperature tensile and fatigue tests. The samples demonstrated mechanical properties sufficient to replace commercial parts. The bottom grid and bottom nozzle parts of a nuclear fuel assembly were also manufactured using LPBF technology and compared to commercial parts. The high design flexibility of LPBF allowed for innovative structures, resulting in better performance than commercial parts. These research examples support the practical application of additive manufacturing in the nuclear field by providing necessary data for standardization and certification.
引用
收藏
页数:12
相关论文
共 67 条
  • [1] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Ahn, Soung Yeoul
    Jeong, Sang Guk
    Kim, Eun Seong
    Kang, Suk Hoon
    Choe, Jungho
    Ryu, Joo Young
    Choi, Dae Woon
    Lee, Jin Seok
    Cho, Jung-Wook
    Nakano, Takayoshi
    Kim, Hyoung Seop
    [J]. METALS AND MATERIALS INTERNATIONAL, 2023, 29 (09) : 2760 - 2766
  • [2] <bold>Heat treatments of Inconel 718 nickel</bold>-<bold>based superalloy</bold><bold>: </bold><bold>A Review</bold>
    Ajay, Polasani
    Dabhade, Vikram V.
    [J]. METALS AND MATERIALS INTERNATIONAL, 2024, : 1204 - 1231
  • [3] Fatigue Behavior of Inconel 718 TIG Welds
    Alexopoulos, Nikolaos D.
    Argyriou, Nikolaos
    Stergiou, Vasillis
    Kourkoulis, Stavros K.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (08) : 2973 - 2983
  • [4] [Anonymous], 2015, ASTM E466-15, DOI 10.1520/E0466-15
  • [5] [Anonymous], 2014, Annual book of ASTM standards 2014 pp, P1, DOI [10.1520/F3055-14A, DOI 10.1520/F3055-14A]
  • [6] [Anonymous], 1990, Metals handbook, V2
  • [7] [Anonymous], 2015, E8E8M15A ASTM, P1, DOI [10.1520/E0008_E0008M-15A, DOI 10.1520/E0008_E0008M-15A]
  • [8] ASTM International, 2018, Standard Specification for Precipitation-Hardening Nickel Alloy (UNS N07718) Plate, Sheet, and Strip for High-Temperature Service, B6vols. 70-07, DOI [10.1520/B0670-07R18, DOI 10.1520/B0670-07R18]
  • [9] Booker M.K., 1980, Elevated-temperature Tensile Properties of Three Heats of Commercially Heat-Treated Alloy 718, DOI [10.2172/5493673, DOI 10.2172/5493673]
  • [10] Tensile properties of Inconel 718 after low temperature neutron irradiation
    Byun, TS
    Farrell, K
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2003, 318 : 292 - 299