The role of artificial intelligence in immune checkpoint inhibitor research: A bibliometric analysis

被引:0
作者
Zhao, Ziqi [1 ]
Xu, Kun [1 ]
Jiang, Yizhuo [1 ]
Xu, Xisheng [1 ]
Liu, Yuliang [1 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Basic Med, 548 Binwen Rd,Bldg 9, Hangzhou, Zhejiang, Peoples R China
关键词
Immune checkpoint inhibitors; artificial intelligence; immunotherapy; bibliometrics; VOSviewer; CiteSpace; CELL LUNG-CANCER; ANTI-CTLA-4; ANTIBODY; IPILIMUMAB; NIVOLUMAB; DOCETAXEL; BLOCKADE; EFFICACY; SCIENCE; WEB;
D O I
10.1080/21645515.2024.2429893
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Immune checkpoint inhibitors (ICIs) are revolutionizing cancer treatment, and Artificial Intelligence (AI) is a key player in this field. A comprehensive analysis of AI's impact on these inhibitors was lacking, but this study addresses that by analyzing literature for trends and future predictions. It reveals rapid growth and international collaboration. We utilized analytical tools such as CiteSpace, VOSviewer, and PlotDB to analyze 774 documents from the Web of Science Core Collection from 2018 to May 2024, discovering a steady increase in annual publications, with China and the United States leading the way. Sun Yat Sen University and researchers like Ock Chan-young, Zhang Hao, and Newman AM are prominent. The most productive journal is Frontiers in Immunology, while the New England Journal of Medicine has the highest citation rate. The most cited reference is Newman, AM's 2019 article in Nature Biotechnology. Keywords like "immunotherapy," "pembrolizumab," "cancer," "machine learning," and "expression" are central to the discourse. Research focuses on the application of inhibitors in non-small cell lung cancer, bioinformatics, and cancer immunotherapy, showing AI's potential to improve oncology precision medicine. Although AI's application in ICIs shows promise, significant challenges still demand exploration and resolution. Continued investment in AI research in this context could lead to significant advancements in cancer treatment. Global collaboration is needed to overcome these challenges and fully leverage AI's potential. This study provides a foundation for future research and interdisciplinary collaboration in this critical field.
引用
收藏
页数:18
相关论文
共 73 条
  • [1] Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy?
    Abi-Aad, Sasha-Jane
    Zouein, Joseph
    Chartouni, Antoine
    Naim, Nabih
    Kourie, Hampig Raphael
    [J]. IMMUNOTHERAPY, 2023, 15 (08) : 611 - 618
  • [2] A Review of the Role of Artificial Intelligence in Healthcare
    Al Kuwaiti, Ahmed
    Nazer, Khalid
    Al-Reedy, Abdullah
    Al-Shehri, Shaher
    Al-Muhanna, Afnan
    Subbarayalu, Arun Vijay
    Al Muhanna, Dhoha
    Al-Muhanna, Fahad A.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (06):
  • [3] Artificial intelligence (AI) systems for interpreting complex medical datasets
    Altman, R. B.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2017, 101 (05) : 585 - 586
  • [4] Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression
    Becht, Etienne
    Giraldo, Nicolas A.
    Lacroix, Laetitia
    Buttard, Benedicte
    Elarouci, Nabila
    Petitprez, Florent
    Selves, Janick
    Laurent-Puig, Pierre
    Sautes-Fridman, Catherine
    Fridman, Wolf H.
    de Reynies, Aurelien
    [J]. GENOME BIOLOGY, 2016, 17
  • [5] Combined Targeted Radiopharmaceutical Therapy and Immune Checkpoint Blockade: From Preclinical Advances to the Clinic
    Bellavia, Michael C.
    Patel, Ravi B.
    Anderson, Carolyn J.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (11) : 1636 - 1641
  • [6] Artificial Intelligence in Cancer Research and Precision Medicine
    Bhinder, Bhavneet
    Gilvary, Coryandar
    Madhukar, Neel S.
    Elemento, Olivier
    [J]. CANCER DISCOVERY, 2021, 11 (04) : 900 - 915
  • [7] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157
  • [8] Understanding the tumor immune microenvironment (TIME) for effective therapy
    Binnewies, Mikhail
    Roberts, Edward W.
    Kersten, Kelly
    Chan, Vincent
    Fearon, Douglas F.
    Merad, Miriam
    Coussens, Lisa M.
    Gabrilovich, Dmitry I.
    Ostrand-Rosenberg, Suzanne
    Hedrick, Catherine C.
    Vonderheide, Robert H.
    Pittet, Mikael J.
    Jain, Rakesh K.
    Zou, Weiping
    Howcroft, T. Kevin
    Woodhouse, Elisa C.
    Weinberg, Robert A.
    Krummel, Matthew F.
    [J]. NATURE MEDICINE, 2018, 24 (05) : 541 - 550
  • [9] Web of Science as a data source for research on scientific and scholarly activity
    Birkle, Caroline
    Pendlebury, David A.
    Schnell, Joshua
    Adams, Jonathan
    [J]. QUANTITATIVE SCIENCE STUDIES, 2020, 1 (01): : 363 - 376
  • [10] Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer
    Borghaei, H.
    Paz-Ares, L.
    Horn, L.
    Spigel, D. R.
    Steins, M.
    Ready, N. E.
    Chow, L. Q.
    Vokes, E. E.
    Felip, E.
    Holgado, E.
    Barlesi, F.
    Kohlhaeufl, M.
    Arrieta, O.
    Burgio, M. A.
    Fayette, J.
    Lena, H.
    Poddubskaya, E.
    Gerber, D. E.
    Gettinger, S. N.
    Rudin, C. M.
    Rizvi, N.
    Crino, L.
    Blumenschein, G. R.
    Antonia, S. J.
    Dorange, C.
    Harbison, C. T.
    Finckenstein, F. Graf
    Brahmer, J. R.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) : 1627 - 1639