Machine learning-driven intelligent tire wear detection system

被引:2
|
作者
Tong, Zexiang [1 ]
Cao, Yaoguang [1 ,2 ]
Wang, Rui [1 ]
Chen, Yuyi [1 ]
Li, Zhuoyang [1 ]
Lu, Jiayi [1 ]
Yang, Shichun [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci Engn, Beijing, Peoples R China
[2] Beihang Univ, State Key Lab Intelligent Transportat Syst, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Tire wear; Accelerometers; PVDF; Signal processing and analysis; Machine learning; CLASSIFICATION;
D O I
10.1016/j.measurement.2024.115848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional methods detect wear by interpreting mathematical models and tire characteristics; however, these methods struggle to accurately reflect the actual rolling condition of the tire. In this study, we propose a machine learning-based tire wear detection module that can provide accurate results under tire test rig conditions. To develop this module, we designed three key components: integrated acceleration and PVDF sensors within the tire to capture vibration and deformation data; signal preprocessing algorithms to highlight multi-source signal differences under varying wear conditions; and deep learning algorithms to achieve precise tire wear grade identification. Experimental results demonstrate that, under different tire pressures, loads, speeds, and wear levels, the system can accurately identify tire wear grades with 99.99% accuracy by combining data from both sensors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [2] Machine Learning-Driven Detection of Cross-Site Scripting Attacks
    Alhamyani, Rahmah
    Alshammari, Majid
    INFORMATION, 2024, 15 (07)
  • [3] Machine Learning-Driven Approach for a COVID-19 Warning System
    Hussain, Mushtaq
    Islam, Akhtarul
    Turi, Jamshid Ali
    Nabi, Said
    Hamdi, Monia
    Hamam, Habib
    Ibrahim, Muhammad
    Cifci, Mehmet Akif
    Sehar, Tayyaba
    ELECTRONICS, 2022, 11 (23)
  • [4] A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients
    Yoo, Daniel
    Divard, Gillian
    Raynaud, Marc
    Cohen, Aaron
    Mone, Tom D.
    Rosenthal, John Thomas
    Bentall, Andrew J.
    Stegall, Mark D.
    Naesens, Maarten
    Zhang, Huanxi
    Wang, Changxi
    Gueguen, Juliette
    Kamar, Nassim
    Bouquegneau, Antoine
    Batal, Ibrahim
    Coley, Shana M.
    Gill, John S.
    Oppenheimer, Federico
    De Sousa-Amorim, Erika
    Kuypers, Dirk R. J.
    Durrbach, Antoine
    Seron, Daniel
    Rabant, Marion
    Van Huyen, Jean-Paul Duong
    Campbell, Patricia
    Shojai, Soroush
    Mengel, Michael
    Bestard, Oriol
    Basic-Jukic, Nikolina
    Juric, Ivana
    Boor, Peter
    Cornell, Lynn D.
    Alexander, Mariam P.
    Coates, P. Toby
    Legendre, Christophe
    Reese, Peter P.
    Lefaucheur, Carmen
    Aubert, Olivier
    Loupy, Alexandre
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] In silico drug discovery: a machine learning-driven systematic review
    Atasever, Sema
    MEDICINAL CHEMISTRY RESEARCH, 2024, 33 (09) : 1465 - 1490
  • [6] Direct tire slip ratio estimation using intelligent tire system and machine learning algorithms
    Xu, Nan
    Tang, Zepeng
    Askari, Hassan
    Zhou, Jianfeng
    Khajepour, Amir
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 175
  • [7] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [8] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [9] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [10] Securing Electric Vehicle Performance: Machine Learning-Driven Fault Detection and Classification
    Khan, Mahbub Ul Islam
    Pathan, Md. Ilius Hasan
    Rahman, Mohammad Mominur
    Islam, Md. Maidul
    Chowdhury, Mohammed Arfat Raihan
    Anower, Md. Shamim
    Rana, Md. Masud
    Alam, Md. Shafiul
    Hasan, Mahmudul
    Sobuj, Md. Shohanur Islam
    Islam, Md. Babul
    Meena, Veerpratap
    Benedetto, Francesco
    IEEE ACCESS, 2024, 12 : 71566 - 71584