Predicting intermediate-risk prostate cancer using machine learning

被引:0
作者
Stojadinovic, Miroslav [1 ]
Stojadinovic, Milorad [2 ]
Jankovic, Slobodan [3 ]
机构
[1] Univ Kragujevac, Fac Med Sci, Svetozara Markov 69, Kragujevac 34000, Serbia
[2] Univ Clin Ctr Serbia, Clin Nephrol, Belgrade, Serbia
[3] Univ Kragujevac, Fac Med Sci, Pharmacol & Toxicol Dept, Kragujevac, Serbia
关键词
Prostate cancer; Prostate biopsy; Diagnosis; Machine learning; Intermediate-risk; RADIATION-THERAPY; STRATIFICATION; DIAGNOSIS;
D O I
10.1007/s11255-024-04342-9
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PurposesIntermediate-risk prostate cancer (IR PCa) is the most common risk group for localized prostate cancer. This study aimed to develop a machine learning (ML) model that utilizes biopsy predictors to estimate the probability of IR PCa and assess its performance compared to the traditional clinical model.MethodsBetween January 2017 and December 2022, patients with prostate-specific antigen (PSA) values of <= 20 ng/mL underwent transrectal ultrasonography-guided prostate biopsies. Patient's age, PSA, digital rectal exam, prostate volume, PSA density (PSAD), and previous negative biopsy, number of positive cores, Gleason score, and biopsy outcome were recorded. Patients are categorized into no cancer, very low, low-, and intermediate-risk categories. The relationship between the model and IR PCa was investigated using binary generalized linear model (GLM) and assessed its discriminatory ability by calculating the area under the receiver operating characteristic curve (AUC).ResultsAmong 729 patients, PCa was detected in 234 individuals (32.1%), with 120 (16.5%) diagnosed with IR PCa. The AUC for the novel model compared to the clinical model was 0.806 (95% CI: 0.722-0.889) versus 0.669 (95% CI: 0.543-0.790), with a p-value of 0.018. In DCA, the GLM outperformed the clinical model by over 7%, potentially allowing for an additional 44.3% reduction in unnecessary biopsies. The PSAD emerged as the most significant predictor.ConclusionWe developed a GLM utilizing pre-biopsy features to predict IR PCa. The model demonstrated good discrimination and clinical applicability, which could assist urologists in determining the necessity of a prostate biopsy.
引用
收藏
页码:1737 / 1746
页数:10
相关论文
共 32 条
[1]   Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Makitie, Antti A. ;
Pirinen, Matti ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 145
[2]   Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging [J].
Ayyildiz, Hakan ;
Ince, Okan ;
Korkut, Esin ;
Kartal, Merve Gulbiz Dagoglu ;
Tunaci, Atadan ;
Erturk, Sukru Mehmet .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2025, 31 (04) :313-320
[3]   Magnetic Resonance Imaging-based T-staging to Predict Biochemical Recurrence after Radical Prostatectomy: A Step Towards the iTNM Classification [J].
Baboudjian, Michael ;
Gondran-Tellier, Bastien ;
Touzani, Alae ;
Martini, Alberto ;
Diamand, Romain ;
Roche, Jean-Baptiste ;
Lacetera, Vito ;
Beauval, Jean-Baptiste ;
Roumeguere, Thierry ;
Simone, Guiseppe ;
Benamran, Daniel ;
Fourcade, Alexandre ;
Fiard, Gaelle ;
van den Bergh, Roderick C. N. ;
Peltier, Alexandre ;
Ploussard, Guillaume .
EUROPEAN UROLOGY ONCOLOGY, 2023, 6 (04) :406-413
[4]   Combining androgen deprivation and radiation therapy in the treatment of localised prostate cancer: Summary of level 1 evidence and current gaps in knowledge [J].
Baude, Jeremy ;
Caubet, Matthieu ;
Defer, Blanche ;
Teyssier, Charles Regis ;
Lagneau, Edouard ;
Crehange, Gilles ;
Lescut, Nicolas .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2022, 37 :1-11
[5]   Oncological and Quality-of-life Outcomes Following Focal Irreversible Electroporation as Primary Treatment for Localised Prostate Cancer: A Biopsy-monitored Prospective Cohort [J].
Blazevski, Alexandar ;
Scheltema, Matthijs J. ;
Yuen, Brian ;
Masand, Natasha ;
Nguyen, Tuan, V ;
Delprado, Warick ;
Shnier, Ron ;
Haynes, Anne-Maree ;
Cusick, Thomas ;
Thompson, James ;
Stricker, Phillip .
EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (03) :283-290
[6]   Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study [J].
Chiu, Peter Ka-Fung ;
Shen, Xiao ;
Wang, Guanjin ;
Ho, Cho-Lik ;
Leung, Chi-Ho ;
Ng, Chi-Fai ;
Choi, Kup-Sze ;
Teoh, Jeremy Yuen-Chun .
PROSTATE CANCER AND PROSTATIC DISEASES, 2022, 25 (04) :672-676
[7]   Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis [J].
Cuocolo, Renato ;
Cipullo, Maria Brunella ;
Stanzione, Arnaldo ;
Romeo, Valeria ;
Green, Roberta ;
Cantoni, Valeria ;
Ponsiglione, Andrea ;
Ugga, Lorenzo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6877-6887
[8]   Contemporary national trends in prostate cancer risk profile at diagnosis [J].
Fletcher, Sean A. ;
Von Landenberg, Nicolas ;
Cole, Alexander P. ;
Gild, Philipp ;
Choueiri, Toni K. ;
Lipsitz, Stuart R. ;
Trinh, Quoc-Dien ;
Kibel, Adam S. .
PROSTATE CANCER AND PROSTATIC DISEASES, 2020, 23 (01) :81-87
[9]   The Value of Prostate-specific Antigen Density for Prostate Imaging-Reporting and Data System 3 Lesions on Multiparametric Magnetic Resonance Imaging: A Strategy to Avoid Unnecessary Prostate Biopsies [J].
Goertz, Magdalena ;
Radtke, Jan Philipp ;
Hatiboglu, Gencay ;
Schuetz, Viktoria ;
Tosev, Georgi ;
Guettlein, Maximilian ;
Leichsenring, Jonas ;
Stenzinger, Albrecht ;
Bonekamp, David ;
Schlemmer, Heinz-Peter ;
Hohenfellner, Markus ;
Nyarangi-Dix, Joanne Nyaboe .
EUROPEAN UROLOGY FOCUS, 2021, 7 (02) :325-331
[10]   A risk calculator to inform the need for a prostate biopsy: a rapid access clinic cohort [J].
Jalali, Amirhossein ;
Foley, Robert W. ;
Maweni, Robert M. ;
Murphy, Keefe ;
Lundon, Dara J. ;
Lynch, Thomas ;
Power, Richard ;
O'Brien, Frank ;
O'Malley, Kieran J. ;
Galvin, David J. ;
Durkan, Garrett C. ;
Murphy, T. Brendan ;
Watson, R. William .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)