Adaptive optimal consensus of nonlinear multi-agent systems with unknown dynamics using off-policy integral reinforcement learning
被引:0
作者:
Yan, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R ChinaNanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
Yan, Lei
[1
]
Liu, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
Pazhou Lab, Guangzhou 510006, Guangdong, Peoples R ChinaNanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
Liu, Zhi
[2
,4
]
Chen, C. L. Philip
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Fac Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R ChinaNanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
Chen, C. L. Philip
[3
]
Zhang, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R ChinaNanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
Zhang, Yun
[2
]
Wu, Zongze
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R ChinaNanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
Wu, Zongze
[2
]
机构:
[1] Nanyang Inst Technol, Sch Intelligent Mfg, Nanyang 473004, Henan, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Univ Technol, Fac Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Pazhou Lab, Guangzhou 510006, Guangdong, Peoples R China
Reinforcement learning (RL) has been identified as a promising approach for developing adaptive optimal consensus schemes for high-order strict-feedback nonlinear multi-agent systems (MASs). However, existing methods have limitations, as they can only be applied to systems with partially unknown dynamics and require an identifier-actor-critic framework. This paper proposes a novel approach that combines classical backstepping techniques and off-policy integral reinforcement learning (IRL) to circumvent these limitations and develop an adaptive optimal consensus scheme for nonlinear MASs with completely unknown dynamics. Specifically, we introduce an off-policy IRL-based adaptive optimal consensus scheme that can obtain optimal control inputs without knowledge of the system dynamics. The algorithm utilizes the actor-critic structure and updates the weight vectors using only one learning rule in each step based on the collected system trajectory data. We have proven that the optimal consensus is achieved, and the estimation errors of the optimal weight vectors are uniformly ultimately bounded (UUB). Finally, we present a simulation example to validate the effectiveness of the proposed approach.
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
Li, Hongliang
Liu, Derong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
Liu, Derong
Wang, Ding
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
Li, Hongliang
Liu, Derong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
Liu, Derong
Wang, Ding
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China