Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention

被引:0
作者
Sangeetha, B. [1 ]
Leroy, K. I. [1 ]
Kumar, B. Udaya [1 ]
机构
[1] St Josephs Coll Engn, Dept Biotechnol, Chennai, Tamilnadu, India
关键词
apoptosis; bioluminescence imaging; gene expression; PROTEIN-PROTEIN INTERACTIONS; IRON-OXIDE PARTICLES; FIREFLY LUCIFERASE; GAUSSIA LUCIFERASE; STEM-CELLS; ILLUMINATING INSIGHTS; GENE-EXPRESSION; LIVING SUBJECTS; REPORTER; TISSUE;
D O I
10.1002/cbf.70020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
引用
收藏
页数:26
相关论文
共 146 条
  • [1] Adams S. T., 2016, Photochemistry and Photobiology, V92, P905
  • [2] Afaq A., 2020, Journal of Nuclear Medicine, V61, P697
  • [3] Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics
    Akerboom, Jasper
    Calderon, Nicole Carreras
    Tian, Lin
    Wabnig, Sebastian
    Prigge, Matthias
    Tolo, Johan
    Gordus, Andrew
    Orger, Michael B.
    Severi, Kristen E.
    Macklin, John J.
    Patel, Ronak
    Pulver, Stefan R.
    Wardill, Trevor J.
    Fischer, Elisabeth
    Schueler, Christina
    Chen, Tsai-Wen
    Sarkisyan, Karen S.
    Marvin, Jonathan S.
    Bargmann, Cornelia I.
    Kim, Douglas S.
    Kugler, Sebastian
    Lagnado, Leon
    Hegemann, Peter
    Gottschalk, Alexander
    Schreiter, Eric R.
    Looger, Loren L.
    [J]. FRONTIERS IN MOLECULAR NEUROSCIENCE, 2013, 6
  • [4] Optimisation of Bioluminescent Reporters for Use with Mycobacteria
    Andreu, Nuria
    Zelmer, Andrea
    Fletcher, Taryn
    Elkington, Paul T.
    Ward, Theresa H.
    Ripoll, Jorge
    Parish, Tanya
    Bancroft, Gregory J.
    Schaible, Ulrich
    Robertson, Brian D.
    Wiles, Siouxsie
    [J]. PLOS ONE, 2010, 5 (05):
  • [5] [Anonymous], 1960, Medical Journal of Australia, V1, P500, DOI [10.5694/J.1326-5377.1960.TB73127.X, 10.5694/J.1326-5377.1960.TB73127.X.-500, 10.5694/j.1326-5377.1960.tb73127.x, DOI 10.5694/J.1326-5377.1960.TB73127.X]
  • [6] Bioluminescence imaging: progress and applications
    Badr, Christian E.
    Tannous, Bakhos A.
    [J]. TRENDS IN BIOTECHNOLOGY, 2011, 29 (12) : 624 - 633
  • [7] Bergamaschi D., 2019, Methods in Molecular Biology, V1929, P53
  • [8] Construction of a bioluminescence reporter plasmid for Francisella tularensis
    Bina, Xiaowen R.
    Miller, Mark A.
    Bina, James E.
    [J]. PLASMID, 2010, 64 (03) : 156 - 161
  • [9] The technology of MRI - the next 10 years?
    Blamire, A. M.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2008, 81 (968) : 601 - 617
  • [10] Branchini B. R., 2011, ChemistryA European Journal, V17, P11352