On the density hypothesis for L-functions associated with holomorphic cusp forms

被引:0
作者
Chen, Bin [1 ]
Debruyne, Gregory [1 ]
Vindas, Jasson [1 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, B-9000 Ghent, Belgium
关键词
density hypothesis; zero-density estimates; Riemann zeta function; holomorphic modular forms; ZEROS;
D O I
10.4171/RMI/1481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the range of validity of the density hypothesis for the zeros of L-functions associated with cusp Hecke eigenforms f of even integral weight, and prove that N-f(sigma, T) << T(2(1 - sigma)+epsilon )holds for sigma >= 1407/1601. This improves upon a result of Ivic, who had previously shown the zero-density estimate in the narrower range sigma >= 53/60. Our result relies on an improvement of the large value estimates for Dirichlet polynomials based on mixed moment estimates for the Riemann zeta function. The main ingredients in our proof are the Halasz-Montgomery inequality, Ivic's mixed moment bounds for the zeta function, Huxley's subdivision argument, Bourgain's dichotomy approach, and Heath-Brown's bound for double zeta sums.
引用
收藏
页码:2179 / 2202
页数:24
相关论文
共 34 条
  • [11] HEATHBROWN DR, 1979, J LOND MATH SOC, V20, P8
  • [12] HEATHBROWN DR, 1979, J LOND MATH SOC, V19, P221
  • [13] DENSITY OF ZEROS OF DIRICHLETS L-FUNCTIONS
    HEATHBROWN, DR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (02): : 231 - 240
  • [14] Zero-density estimate for modular form L-functions in weight aspect
    Hough, Bob
    [J]. ACTA ARITHMETICA, 2012, 154 (02) : 187 - 216
  • [15] Huxley M. N., 1973, Acta Arith., V24, P329
  • [16] Huxley M. N., 1977, Acta Arith., V32, P297
  • [17] Huxley M. N., 1974, Acta Arith., V26, P435, DOI DOI 10.4064/AA-26-4-435-444
  • [18] HUXLEY MN, 1972, INVENT MATH, V15, P164
  • [19] Ingham Ing37 A.E., 1937, Q. J. Math., V1, P255
  • [20] Ivi A., 1992, In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), P231