Toeplitz operators on Bergman spaces with variable exponents

被引:0
作者
Shen, Conghui [2 ]
Li, Songxiao [1 ]
Long, Sujuan [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Minjiang Univ, Sch Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz operator; Bergman spaces; variable exponent; Lebesgue spaces; CARLESON MEASURE THEOREM; MAXIMAL-FUNCTION;
D O I
10.1515/gmj-2025-2003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the boundedness and compactness of Toeplitz operators T phi with the symbol phi is an element of L 1 (D) between different Bergman spaces with the log-H & ouml;lder continuous variable exponents are investigated.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 23 条
[1]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[2]   Maximal, potential and singular type operators on Herz spaces with variable exponents [J].
Almeida, Alexandre ;
Drihem, Douadi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :781-795
[3]   Besov spaces with variable smoothness and integrability [J].
Almeida, Alexandre ;
Hasto, Peter .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) :1628-1655
[4]  
Bergman S., 1970, KERNEL FUNCTION CONF
[5]   INTERPOLATIONS BY BOUNDED ANALYTIC FUNCTIONS AND CORONA PROBLEM [J].
CARLESON, L .
ANNALS OF MATHEMATICS, 1962, 76 (03) :547-&
[6]   Carleson Measures for Variable Exponent Bergman Spaces [J].
Chacon, Gerardo R. ;
Rafeiro, Humberto ;
Camilo Vallejo, Juan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (07) :1623-1638
[7]   Toeplitz Operators on Variable Exponent Bergman Spaces [J].
Chacon, Gerardo R. ;
Rafeiro, Humberto .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3525-3536
[8]  
CIMA JA, 1982, J OPERAT THEOR, V7, P157
[9]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[10]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3