Compact PNP BJT-Based Temperature Sensor and Sub-1-V Bandgap Reference for SoC Applications in 4-nm FinFET

被引:0
|
作者
Li, You [1 ]
Duarte, David E. [1 ]
Ayers, James S. [1 ]
Fan, Yongping [1 ]
机构
[1] Intel Corp, Hillsboro, OR 97124 USA
关键词
Temperature sensors; Voltage; FinFETs; Temperature measurement; Photonic band gap; System-on-chip; Resistors; Semiconductor device measurement; Industries; Costs; 4-nm FinFET; bandgap reference (BGR); PNP bipolar junction transistor (BJT); sub-1; V; systems on chip (SoC); temperature sensor; THERMAL SENSOR; CMOS; INACCURACY; COMPENSATION; COEFFICIENT; 3-SIGMA;
D O I
10.1109/JSSC.2024.3524245
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a dual-function circuit of a temperature sensor and a sub-1-V bandgap reference (BGR) implemented in the 4-nm FinFET CMOS process. The design, based on subthreshold MOS transistors and parasitic PNP bipolar junction transistor (BJT) devices, offers distinct advantages over existing PNP BJT-based sensors and sub-1-V BGRs. As a temperature sensor, it achieves the fastest conversion time of 7 mu s, while consuming a power of only 68.5 mu W, which results in the lowest energy consumption rate of 0.5 nJ per conversion. In addition, the sensor demonstrates a resolution of 0.46 C-degrees and a resolution figure-of-merit (FOM) of 0.106 nJ & sdot; K-2. It also functions as a low-cost, high-accuracy BGR capable of sub-1-V operation, producing a stable output of 450 mV within a compact 0.0061 mm(2) footprint, and featuring an accuracy of +/- 1.1%(+/- 3 sigma) along with an average temperature coefficient (TC) of 33 ppm/C-degrees. Moreover, by supporting both BGR and sensing modes, the design significantly reduces costs by incorporating dual functionalities within a single architecture.
引用
收藏
页数:12
相关论文
共 20 条
  • [1] Design of sub-1-V CMOS bandgap reference circuit using only one BJT
    Lahiri, Abhirup
    Agarwal, Nitin
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2012, 71 (03) : 359 - 369
  • [2] Design of sub-1-V CMOS bandgap reference circuit using only one BJT
    Abhirup Lahiri
    Nitin Agarwal
    Analog Integrated Circuits and Signal Processing, 2012, 71 : 359 - 369
  • [3] A 0.5V BJT-Based CMOS Thermal Sensor in 10-nm FinFET Technology
    Lin, Da Shin
    Hong, Hao Ping
    2017 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2017, : 41 - 44
  • [4] Low-power sub-1-V compact bandgap reference for passive RFID tags
    Zhang, Hualei
    Xiao, Zhibin
    Tan, Xi
    Min, Hao
    ELECTRONICS LETTERS, 2015, 51 (11) : 815 - 816
  • [5] A sub-1V BJT-based CMOS temperature sensor from-55 °C to 125 °C
    Wang, Bo
    Law, Man Kay
    Tang, Fang
    Bermak, Amine
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [6] Compact BJT-Based Thermal Sensor for Processor Applications in a 14 nm tri-Gate CMOS Process
    Oshita, Takao
    Shor, Joseph
    Duarte, David E.
    Kornfeld, Avner
    Zilberman, Dror
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (03) : 799 - 807
  • [7] A 113-nW, Sub-1 V Single BJT-Based Voltage and Current Reference in One Circuit
    Bansal, Raghav
    Chatterjee, Shouri
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 1367 - 1371
  • [8] System in Package of Bandgap Voltage Reference Circuit with Sub-1-V Operation in CMOS for Communication Control and BioMedical Applications
    Lai, Wen Cheng
    Huang, Jhin Fang
    Ye, Tin
    Lay, Wang Tyng
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 646 - 649
  • [9] A Sub-1-V 65-nm MOS Threshold Monitoring-Based Voltage Reference
    Tan, Xiao Liang
    Chan, Pak Kwong
    Dasgupta, Uday
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (10) : 2317 - 2321
  • [10] A Sub-1 V Capacitively Biased BJT-Based Temperature Sensor With an Inaccuracy of ±0.15 °C (3σ) From-55 °C to 125 °C
    Tang, Zhong
    Pan, Sining
    Grubor, Milos
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (12) : 3433 - 3441