A Comparative Study of Machine Learning and Deep Learning Models for Automatic Parkinson's Disease Detection from Electroencephalogram Signals

被引:0
|
作者
Bera, Sankhadip [1 ]
Geem, Zong Woo [2 ]
Cho, Young-Im [3 ]
Singh, Pawan Kumar [1 ]
机构
[1] Jadavpur Univ, Dept Informat Technol, Jadavpur Univ Campus,Plot 8,Salt Lake Bypass,LB Bl, Kolkata 700106, India
[2] Gachon Univ, Coll IT Convergence, Seongnam 13120, South Korea
[3] Gachon Univ, Dept Comp Engn, Seongnam, South Korea
关键词
Parkinson's disease detection; electroencephalogram signals; power spectral density; UC San Diego Resting State EEG dataset; IOWA dataset; support vector machine; convolutional neural network;
D O I
10.3390/diagnostics15060773
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Parkinson's disease (PD) is one of the most prevalent, widespread, and intricate neurodegenerative disorders. According to the experts, at least 1% of people over the age of 60 are affected worldwide. In the present time, the early detection of PD remains difficult due to the absence of a clear consensus on its brain characterization. Therefore, there is an urgent need for a more reliable and efficient technique for early detection of PD. Using the potential of electroencephalogram (EEG) signals, this study introduces an innovative method for the detection or classification of PD patients through machine learning, as well as a more accurate deep learning approach. Methods: We propose an innovative EEG-based PD detection approach by integrating advanced spectral feature engineering with machine learning and deep learning models. Using (a) the UC San Diego Resting State EEG dataset and (b) IOWA dataset, we extract a standardized EEG feature from five key frequency bands-alpha, beta, theta, gamma, delta (alpha,beta,theta,gamma,delta) and employ an SVM (Support Vector Machine) classifier as a baseline, achieving a notable accuracy. Furthermore, we implement a deep learning classifier (CNN) with a complex multi-dimensional feature set by combining power values from all frequency bands, which gives superior performance in distinguishing PD patients (both with medication and without medication states) from healthy patients. Results: With the five-fold cross-validation on these two datasets, our approaches successfully achieve promising results in a subject dependent scenario. The SVM classifier achieves competitive accuracies of 82% and 94% in the UC San Diego Resting State EEG dataset (using gamma band) and IOWA dataset, respectively in distinguishing PD patients from non-PD patients in subject. With the CNN classifier, our model is able to capture major cross-frequency dependencies of EEG; therefore, the classification accuracies reach beyond 96% and 99% with those two datasets, respectively. We also perform our experiments in a subject independent environment, where the SVM generates 68.09% accuracy. Conclusions: Our findings, coupled with advanced feature extraction and deep learning, have the potential to provide a non-invasive, efficient, and reliable approach for diagnosing PD, with further work aimed at enhancing feature sets, inclusion of a large number of subjects, and improving model generalizability across more diverse environments.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Comparative Study of Machine Learning Models for Parkinson's Disease Detection
    Bunterngchit, Chayut
    Bunterngchit, Yuthachai
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 465 - 469
  • [2] Detection of Parkinson's Disease from EEG Signals with EEMD using Machine Learning and Deep Learning Techniques
    Srikanth, Nagothu Bala
    Priya, S. Jeba
    Subathra, M. S. P.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 274 - 279
  • [3] Comparative Analysis of Machine Learning, Ensemble Learning and Deep Learning Classifiers for Parkinson’s Disease Detection
    Goyal P.
    Rani R.
    SN Computer Science, 5 (1)
  • [4] A review of machine learning and deep learning for Parkinson’s disease detection
    Hajar Rabie
    Moulay A. Akhloufi
    Discover Artificial Intelligence, 5 (1):
  • [5] Automatic Eye Disease Detection Using Machine Learning and Deep Learning Models
    Badah, Nouf
    Algefes, Amal
    AlArjani, Ashwaq
    Mokni, Raouia
    PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022, 2023, 475 : 773 - 787
  • [6] Detection of Parkinson’s disease from handwriting using deep learning: a comparative study
    Catherine Taleb
    Laurence Likforman-Sulem
    Chafic Mokbel
    Maha Khachab
    Evolutionary Intelligence, 2023, 16 : 1813 - 1824
  • [7] Detection of Parkinson's disease from handwriting using deep learning: a comparative study
    Taleb, Catherine
    Likforman-Sulem, Laurence
    Mokbel, Chafic
    Khachab, Maha
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (06) : 1813 - 1824
  • [8] Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning
    Wang, Wu
    Lee, Junho
    Harrou, Fouzi
    Sun, Ying
    IEEE ACCESS, 2020, 8 : 147635 - 147646
  • [9] A Comparative Study of Existing Machine Learning Approaches for Parkinson's Disease Detection
    Pahuja, Gunjan
    Nagabhushan, T. N.
    IETE JOURNAL OF RESEARCH, 2021, 67 (01) : 4 - 14
  • [10] Parkinson's Disease Identification from Speech Signals Using Machine Learning Models
    Saxena, Rahul
    Andrew, J.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 201 - 213