Dual representation learning for one-step clustering of multi-view data

被引:0
|
作者
Wei Zhang [1 ]
Zhaohong Deng [2 ]
Kup-Sze Choi [2 ]
Jun Wang [3 ]
Shitong Wang [4 ]
机构
[1] Nantong University,School of Artificial Intelligence and Computer Science
[2] Jiangnan University,School of Artificial Intelligence and Computer Science
[3] Jiangsu Key Laboratory of Media Design and Software Technology,The Centre for Smart Health
[4] The Hong Kong Polytechnic University,School of Communication and Information Engineering
[5] Shanghai University,undefined
关键词
Multi-view data; Dual representation learning; Consistent knowledge; Unique knowledge; One-step clustering;
D O I
10.1007/s10462-025-11183-0
中图分类号
学科分类号
摘要
In real-world applications, multi-view data is widely available and multi-view learning is an effective method for mining multi-view data. In recent years, multi-view clustering, as an important part of multi-view learning, has been receiving more and more attention, while how to design an effective multi-view data mining method and make it more pertinent for clustering is still a challenging mission. For this purpose, a new one-step multi-view clustering method with dual representation learning is proposed in this paper. First, based on the fact that multi-view data contain both consistent knowledge between views and unique knowledge of each view, we propose a new dual representation learning method by improving the matrix factorization to explore them and to form common and specific representations. Then, we design a novel one-step multi-view clustering framework, which unifies the dual representation learning and multi-view clustering partition into one process. In this way, a mutual self-taught mechanism is developed in this framework and leads to more promising clustering performance. Finally, we also introduce the maximum entropy and orthogonal constraint to achieve optimal clustering results. Extensive experiments on seven real world multi-view datasets demonstrate the effectiveness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [21] Consensus One-Step Multi-view Image Clustering Based on Low-Rank Tensor Learning
    Li, Lin
    Zhou, Xiaojun
    Lu, Zhiqiang
    Li, Dongxiao
    Zhou, Xiaoxiao
    Song, Li
    Wu, Na
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 117 - 121
  • [22] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [23] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [24] One-step multi-view spectral clustering based on multi-feature similarity fusion
    Kong, Dezheng
    Zhou, Shuisheng
    Jin, Sheng
    Ye, Feng
    Zhang, Ximin
    SIGNAL PROCESSING, 2025, 227
  • [25] Anchor Graph-Based Feature Selection for One-Step Multi-View Clustering
    Zhao, Wenhui
    Li, Qin
    Xu, Huafu
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7413 - 7425
  • [26] One-step multi-view clustering via deep-level semantics exploiting
    Peng, Jiawei
    Mi, Yong
    Ren, Zhenwen
    Kang, Yu
    JOURNAL OF INFORMATION SCIENCE, 2024,
  • [27] Learning Smooth Representation for Multi-view Subspace Clustering
    Huang, Shudong
    Liu, Yixi
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Lv, Jiancheng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3421 - 3429
  • [28] Joint representation learning for multi-view subspace clustering
    Zhang, Guang-Yu
    Zhou, Yu-Ren
    Wang, Chang-Dong
    Huang, Dong
    He, Xiao-Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [29] Representation Learning in Multi-view Clustering: A Literature Review
    Chen, Man-Sheng
    Lin, Jia-Qi
    Li, Xiang-Long
    Liu, Bao-Yu
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    DATA SCIENCE AND ENGINEERING, 2022, 7 (03) : 225 - 241
  • [30] Representation Learning in Multi-view Clustering: A Literature Review
    Man-Sheng Chen
    Jia-Qi Lin
    Xiang-Long Li
    Bao-Yu Liu
    Chang-Dong Wang
    Dong Huang
    Jian-Huang Lai
    Data Science and Engineering, 2022, 7 : 225 - 241