Effects of dietary protein levels with cottonseed protein concentrate inclusion on growth, feed utilization, liver health and intestinal microbiota of juvenile largemouth bass (Micropterus salmoides)

被引:1
|
作者
Chen, Wen [1 ,2 ]
Han, Dong [1 ,2 ,3 ,4 ]
Yang, Yunxia [1 ]
Zhang, Zhimin [1 ]
Jin, Junyan [1 ,2 ,3 ,4 ]
Liu, Haokun [1 ,2 ,3 ,4 ]
Zhu, Xiaoming [1 ,3 ]
Xie, Shouqi [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing 100049, Peoples R China
[3] Hubei Engn Res Ctr Aquat Anim Nutr & Feed, Wuhan 430072, Peoples R China
[4] Chinese Acad Sci, Key Lab Breeding Biotechnol & Sustainable Aquacult, Wuhan 430072, Peoples R China
关键词
Largemouth bass ( Micropterus salmoides ); Cottonseed protein concentrate; Growth; Dietary protein level; FISH-MEAL; BODY-COMPOSITION; MOLECULAR-MECHANISMS; GENE-EXPRESSION; REPLACEMENT; SHRIMP; REQUIREMENTS; MICROFLORA; NUTRIENT; INDEXES;
D O I
10.1016/j.aqrep.2024.102461
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
An 8-weeks growth trial was conducted to evaluate the effects of dietary protein levels mainly based on cottonseed protein concentrate (CPC) meal on growth performance, protein metabolism, liver health and intestinal microbiota of largemouth bass (Micropterus salmoides) juveniles. Five isolipidic (100 g/kg) diets were prepared with protein levels ranging from 400 to 560 g/kg, with CPC of 155 g/kg, 214 g/kg, 272 g/kg, 330 g/kg, 390 g/kg to obtain five experimental diets with gradient protein levels (399.9 g/kg, 428.0 g/kg, 462.8 g/kg, 503.5 g/kg and 541.5 g/kg, respectively (CPC1, CPC2, CPC3, CPC4 and CPC5)). 300 fish (initial body weight: 14.71 +/- 0.50 g) were randomly assigned into 15 tanks (3 tanks per diet). The results showed that, the fish of CPC5 group had the highest specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) (P < 0.05). Increased dietary protein up-regulated most liver key genes of mTOR pathway (akt, tor, s6k, 4ebp1, s6) while down-regulated atf4 at medium dietary protein (P < 0.05). The expression of fas was down-regulated with increased dietary protein, while dgat1 was higher at CPC5 group (P < 0.05). The genes related to lipolysis were up-regulated with increased dietary protein (P < 0.05). The key genes of apoptosis including bcl2, casp9, casp3 (apoptosis) oxidative stress and endoplasmic reticulum stress were significantly up-regulated at high dietary protein (P < 0.05), which reduced the antioxidant and anti-stress capacity of the liver. Dietary 462.8 g/kg protein could maintain the normal composition and metabolic function of intestinal microbiota. In summary, dietary protein requirement using CPC as main protein source was estimated to be 463 g/kg to 510 g/kg for liver health or best growth of largemouth bass juveniles.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effects of dietary yeast nucleotides on the growth performance and muscle quality of juvenile largemouth bass (Micropterus salmoides)
    Wang, Yuhui
    Wang, Jiahuang
    Liu, Lihe
    Xu, Hongsen
    Liang, Hongwei
    Wang, Zhongkai
    Gu, Jiajia
    AQUACULTURE REPORTS, 2024, 36
  • [32] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [33] Effects of dietary berberine hydrochloride inclusion on growth, antioxidant capacity, glucose metabolism and intestinal microbiome of largemouth bass (Micropterus salmoides)
    Chen, Shiwen
    Jiang, Xueluan
    Liu, Ning
    Ren, Minchun
    Wang, Zhenjie
    Li, Mingkong
    Chen, Naisong
    Li, Songlin
    AQUACULTURE, 2022, 552
  • [34] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [35] Effects of Dietary Phospholipids on Growth Performance, Digestive Enzymes Activity and Intestinal Health of Largemouth Bass (Micropterus salmoides) Larvae
    Wang, Shilin
    Han, Zhihao
    Turchini, Giovanni M.
    Wang, Xiaoyuan
    Fang, Zishuo
    Chen, Naisong
    Xie, Ruitao
    Zhang, Haitao
    Li, Songlin
    FRONTIERS IN IMMUNOLOGY, 2022, 12
  • [36] Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part I: effects of poultry by-product meal and soybean meal on growth, feed utilization, and health
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2021, 53 (01) : 33 - 47
  • [37] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Yi, Changguo
    Liang, Hualiang
    Xu, Gangchun
    Zhu, Jian
    Wang, Yongli
    Li, Songlin
    Ren, Mingchun
    Chen, Xiaoru
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (01) : 349 - 365
  • [38] Functional Properties of Protein Hydrolysates on Growth, Digestive Enzyme Activities, Protein Metabolism, and Intestinal Health of Larval Largemouth Bass (Micropterus salmoides)
    Sheng, Zhengyu
    Turchini, Giovanni M.
    Xu, Jianming
    Fang, Zishuo
    Chen, Naisong
    Xie, Ruitao
    Zhang, Haitao
    Li, Songlin
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [39] Effects of dietary vitamin E level on growth performance, feed utilization, antioxidant capacity and nonspecific immunity of largemouth bass, Micropterus salmoides
    Li, Songlin
    Lian, Xueyuan
    Chen, Naisong
    Wang, Mengle
    Sang, Chunyan
    AQUACULTURE NUTRITION, 2018, 24 (06) : 1679 - 1688
  • [40] Interactions between different single protein and feeding level on growth performance, hepatic lipid metabolism and health of largemouth bass (Micropterus salmoides)
    Liu, Xiaojuan
    Li, Lukuan
    Huang, Yanqing
    Wang, Chunfang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2025, 325