Antimony (Sb)-doped Bi2S3 nanorod films for photoelectrochemical water splitting

被引:1
|
作者
Chalapathi, U. [1 ]
Reddy, Nandarapu Purushotham [1 ]
Alhammadi, Salh [2 ]
Alshgari, Razan A. [3 ]
Dhanalakshmi, Radhalayam [4 ]
Reddy, Golkonda Srinivas [5 ]
Sangaraju, Sambasivam [6 ]
Mohanarangam, Krithikaa [7 ]
Reddy, Vasudeva Reddy Minnam [3 ,8 ]
Ahn, Chang-Hoi [1 ]
Park, Si-Hyun [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Yeungnam Univ, Sch Chem Engn, Gyongsan Si 38541, South Korea
[3] King Saud Univ, Coll Sci, Chem Dept, Riyadh 11451, Saudi Arabia
[4] Univ Santiago Chile USACH, Dept Phys, Santiago, Chile
[5] Mahatma Gandhi Inst Technol, Dept Phys & Chem, Hyderabad 500075, India
[6] United Arab Emirates Univ, Natl Water & Energy Ctr, Al Ain 15551, U Arab Emirates
[7] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune Campus, Pune, India
[8] SIMATS, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
基金
新加坡国家研究基金会;
关键词
Nanorods; Chemical bath deposition; Sb-doping; X-ray diffraction; Microstructure; Water splitting; THIN-FILMS; GROWTH; SB; NANOSTRUCTURE; NANOWIRE; NANOTUBE;
D O I
10.1016/j.jssc.2024.125099
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Bi2S3 is a promising material for photoelectrochemical (PEC) water splitting due to its favorable optoelectronic properties, abundance of non-toxic elements, and chemical stability. However, pure Bi2S3 exhibits low photocurrent efficiency due to charge recombination and slow charge transport. To enhance its performance, we doped antimony (Sb) into the Bi2S3 matrix, improving both its physical and PEC characteristics. The Sb doping concentration was varied from 0 to 3.1 at.% in Bi2S3 films, which were fabricated through chemical bath deposition followed by annealing. Undoped Bi2S3 formed nanorods with a direct bandgap of 1.26 eV and achieved a photocurrent density of 4.5 mA/cm2 at 1.0 V vs Ag/AgCl. Sb doping at 0.9 at.% increased both crystallite size and nanorod density, resulting in a bandgap of 1.43 eV and a photocurrent density of 7.0 mA/cm2. At higher Sb concentrations (2.2 to 3.1 at.%), the nanorod size further increased, while the bandgap decreased to 1.20 eV, with a corresponding increase in photocurrent density to 8.6 mA/cm2. These results demonstrate that Sb doping significantly enhances the nanorod density, photocurrent, and stability of Bi2S3 photoelectrodes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Novel TiO2/Bi4Ti3O12 nanorod arrays decorated with Co-Pi for boosted solar photoelectrochemical water splitting
    Liu, Jun
    Sun, Meng
    Chang, Meng-Jie
    Cui, Wen-Na
    Zhang, Cong-Miao
    Ni, Fu-Rong
    Zhang, Jing
    Fan, Si-Meng
    Du, Hui-Ling
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 157
  • [32] Structural characterization of chemically deposited Bi2S3 and Bi2Se3 thin films
    Lokhande, CD
    Sankapal, BR
    Mane, RS
    Pathan, HM
    Muller, M
    Giersig, M
    Tributsch, H
    Ganeshan, V
    APPLIED SURFACE SCIENCE, 2002, 187 (1-2) : 108 - 115
  • [33] Degradation of Organic Dye Congo Red by Heterogeneous Solar Photocatalysis with Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO Thin Films
    Palma Soto, Eli
    Gonzalez, Claudia A. Rodriguez
    Morales, Priscy Alfredo Luque
    Blas, Hortensia Reyes
    Castillo, Amanda Carrillo
    CATALYSTS, 2024, 14 (09)
  • [34] TiO2 Photoanodes Sensitized with Bi2Se3 Nanoflowers for Visible- Near-Infrared Photoelectrochemical Water Splitting
    Subramanyam, Palyam
    Meena, Bhagatram
    Suryakala, Duvvuri
    Subrahmanyam, Challapalli
    ACS APPLIED NANO MATERIALS, 2021, 4 (01) : 739 - 745
  • [35] The synthesis of superhydrophobic Bi2S3 complex nanostructures
    Xiao, Yujiang
    Cao, Huaqiang
    Liu, Kaiyu
    Zhang, Sichun
    Chernow, Victoria
    NANOTECHNOLOGY, 2010, 21 (14)
  • [36] A chemical lithography route to Bi2S3 nanotubes
    Zhang, Junjun
    Zhang, Weixin
    Yang, Zeheng
    APPLIED SURFACE SCIENCE, 2011, 257 (14) : 6239 - 6242
  • [37] A Core/Shell Bi2S3/BiVO4 Nanoarchitecture for Efficient Photoelectrochemical Water Oxidation
    Xiong, Yuli
    Zhang, Duo
    Zhao, Xiaoxuan
    Peng, Bo
    Yu, Peng
    Cheng, Zhenxiang
    CHEMSUSCHEM, 2024, 17 (20)
  • [38] Comprehensive physical and chemical properties of sulfurized Bi2S3 films prepared by CBD process
    Krishna, V. Gopala
    Reddy, G. Phaneendra
    Revathi, N.
    Reddy, K. T. Ramakrishna
    NEXT MATERIALS, 2025, 8
  • [39] Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays
    Wolcott, Abraham
    Smith, Wilson A.
    Kuykendall, Tevye R.
    Zhao, Yiping
    Zhang, Jin Z.
    SMALL, 2009, 5 (01) : 104 - 111
  • [40] Enhancement in photo response of spray deposited Yttrium doped Bi2S3 thin films
    Shkir, Mohd.
    Alshahrani, Thamraa
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 351