A Short-term Power Load Forecasting Based on CSWOA-TPA-BiGRU

被引:0
|
作者
Xie, Chen [1 ]
Yang, Ling [1 ]
Zhu, Difan [1 ]
Li, Jiewen [1 ]
Hu, Wenbo [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024 | 2024年
关键词
Power load forecasting; Attention mechanism; Whale optimization algorithm; Crisscross optimization; Bidirectional gated recurrent unit;
D O I
10.1145/3674225.3674348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To address the issues of existing short-term load forecasting models that cannot effectively mine key information for load prediction, lack of extraction of time series patterns, and insufficient prediction accuracy, a short-term electric load forecasting model is proposed that combines Bidirectional Gated Recurrent Unit (BiGRU), Temporal Pattern Attention (TPA)and Crisscross Whale Optimization Algorithm (CSWOA). Firstly, BiGRU is used to obtain time series features in the raw data and effectively capture the changing patterns of key feature vectors. Secondly, TPA adaptively weights the state vectors output by BiGRU to further mine the hidden relationships among different variables at different time steps and solve the blindness of artificially selecting the influencing factors of load forecasting. Finally, the CSWOA algorithm is used to optimize the weight coefficients and bias parameters of the fully connected layer in the TPA-BiGRU model, solving the problem that neural networks using gradient descent are prone to getting stuck in local optima when updating parameters. The model was tested on electric load data provided by the 9th National University Student Electricity and Mathematics Modeling Competition. The experimental results showed that the model had lower percentage error (MAPE), root mean square error (RMSE), and higher determination coefficient (R2).
引用
收藏
页码:677 / 681
页数:5
相关论文
共 50 条
  • [21] Optimized Seq2Seq model based on multiple methods for short-term power load forecasting
    Dai, Yeming
    Yang, Xinyu
    Leng, Mingming
    APPLIED SOFT COMPUTING, 2023, 142
  • [22] Short-term Power Load Forecasting Based on TCN-BiLSTM-Attention and Multi-feature Fusion
    Feng, Yang
    Zhu, Jiashan
    Qiu, Pengjin
    Zhang, Xiaoqi
    Shuai, Chunyan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 5475 - 5486
  • [23] Short-Term Power Load Forecasting in Three Stages Based on CEEMDAN-TGA Model
    Hong, Yan
    Wang, Ding
    Su, Jingming
    Ren, Maowei
    Xu, Wanqiu
    Wei, Yuhao
    Yang, Zhen
    SUSTAINABILITY, 2023, 15 (14)
  • [24] Short-term power load forecasting based on combination of residual network and Bi-LSTM
    Li Y.
    Yin P.
    Chen J.
    Zhang Y.
    Yao B.
    Liu W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2023, 55 (08): : 79 - 86
  • [25] Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention
    Wang, Di
    Li, Sha
    Fu, Xiaojin
    ENERGIES, 2024, 17 (16)
  • [26] A Short-term Power Load Forecasting Method Based on Attention Mechanism of CNN-GRU
    Zhao B.
    Wang Z.
    Ji W.
    Gao X.
    Li X.
    Dianwang Jishu/Power System Technology, 2019, 43 (12): : 4370 - 4376
  • [27] A Short-Term Power Load Forecasting Method Using CNN-GRU with an Attention Mechanism
    Hua, Qingbo
    Fan, Zengliang
    Mu, Wei
    Cui, Jiqiang
    Xing, Rongxin
    Liu, Huabo
    Gao, Junwei
    ENERGIES, 2025, 18 (01)
  • [28] Short-term power load forecasting using improved ant colony clustering
    Li Wei
    Han Zhu-hua
    FIRST INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, : 221 - 224
  • [29] Short-term Power Load Forecasting with Deep Belief Network and Copula Models
    He, Yusen
    Deng, Jiahao
    Li, Huajin
    2017 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2017), VOL 1, 2017, : 191 - 194
  • [30] Forecasting of the Short-Term Electricity Load Based on WOA-BILSTM
    Zhao, Huaxin
    Zhou, Zhenliu
    Zhang, Pizhen
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (11)