A light-weight deep learning framework for Low Light Image Enhancement

被引:1
|
作者
Zainab, Laraib [1 ,2 ]
Afzal, Hammad [1 ,3 ]
Mahmood, Khawir [1 ]
Arif, Omar [1 ,4 ]
机构
[1] Natl Univ Sci & Technol, Islamabad, Pakistan
[2] Natl Univ Modern Languages, Islamabad, Pakistan
[3] Univ Portsmouth, London, England
[4] Amer Univ Sharjah, Coll Engn, Sharjah, U Arab Emirates
关键词
Deep learning; Low Light Image Enhancement; Convolutional neural network; Lightweight architecture; Computer vision; Exposure fusion; NETWORK; REPRESENTATION; RETINEX; GAP;
D O I
10.1016/j.neucom.2024.129236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision, deep learning-based methods for improving low-light images have gained popularity. The proposed lightweight end-to-end deep neural network architecture is designed by minimizing the number of trainable parameters while optimizing design choices for efficiency and ensuring fast inference time. The proposed architecture consists of denoising, enhancing, and fusion modules designed to enhance image visibility, and contrast and reduce noise while preserving content and color information. We used a modified convolutional neural network (CNN)-based framework for exposure fusion that is designed to identify and rectify hidden degradation within dimly light images and highly adaptive to diverse lighting conditions. However, after conducting quantitative experiments, we have found that the proposed method outperforms the state-of-the-art TTST by about 0.48 dB and EDiffSR by 1.48 dB. Our lightweight method accounts for 8.28% and 6.77% of the computational cost (FLOPs) of TTST and EDiffSR respectively, and requires just 1.91% and 1.35% of their trainable parameters additionally.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Light-Weight Deep Learning-Based Architecture for Sign Language Classification
    Nareshkumar, M. Daniel
    Jaison, B.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03) : 3501 - 3515
  • [42] Weight Uncertainty Network for Low-Light Image Enhancement
    Jin, Yutao
    Sun, Yue
    Chen, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 106 - 117
  • [43] Multi-Feature Learning for Low-Light Image Enhancement
    Huang, Wei
    Zhu, Yifeng
    Wang, Rui
    Lu, Xiaofeng
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [44] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [45] Low-light image enhancement by deep learning network for improved illumination map
    Wang, Manli
    Li, Jiayue
    Zhang, Changsen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [46] A Variational Model for Low-light Image Enhancement with Two Weight Matrices
    Chen, Pengyi
    Wang, Yong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7040 - 7045
  • [47] Learning a Single Convolutional Layer Model for Low Light Image Enhancement
    Zhang, Yuantong
    Teng, Baoxin
    Yang, Daiqin
    Chen, Zhenzhong
    Ma, Haichuan
    Li, Gang
    Ding, Wenpeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5995 - 6008
  • [48] Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement
    Ma, Long
    Liu, Risheng
    Zhang, Jiaao
    Fan, Xin
    Luo, Zhongxuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5666 - 5680
  • [49] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [50] A switched view of Retinex: Deep self-regularized low-light image enhancement
    Jiang, Zhuqing
    Li, Haotian
    Liu, Liangjie
    Men, Aidong
    Wang, Haiying
    NEUROCOMPUTING, 2021, 454 : 361 - 372