In computer vision, deep learning-based methods for improving low-light images have gained popularity. The proposed lightweight end-to-end deep neural network architecture is designed by minimizing the number of trainable parameters while optimizing design choices for efficiency and ensuring fast inference time. The proposed architecture consists of denoising, enhancing, and fusion modules designed to enhance image visibility, and contrast and reduce noise while preserving content and color information. We used a modified convolutional neural network (CNN)-based framework for exposure fusion that is designed to identify and rectify hidden degradation within dimly light images and highly adaptive to diverse lighting conditions. However, after conducting quantitative experiments, we have found that the proposed method outperforms the state-of-the-art TTST by about 0.48 dB and EDiffSR by 1.48 dB. Our lightweight method accounts for 8.28% and 6.77% of the computational cost (FLOPs) of TTST and EDiffSR respectively, and requires just 1.91% and 1.35% of their trainable parameters additionally.
机构:
Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Ren, Wenqi
Liu, Sifei
论文数: 0引用数: 0
h-index: 0
机构:
NVIDIA Res, Santa Clara, CA 95051 USAChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Liu, Sifei
Ma, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Tencent AI Lab, Shenzhen 518000, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Ma, Lin
Xu, Qianqian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Xu, Qianqian
Xu, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
SenseTime, Beijing 100084, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Xu, Xiangyu
Cao, Xiaochun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Cao, Xiaochun
Du, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R ChinaChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
Du, Junping
Yang, Ming-Hsuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Sch Engn, Merced, CA 95343 USAChinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
机构:
China Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R China
Shandong Inst Petr & Chem Technol, Key Lab Intelligent Informat Proc, Dongying 257000, Peoples R ChinaChina Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R China
Shang, Kai
Shao, Mingwen
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R China
Shao, Mingwen
Qiao, Yuanjian
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R China
Qiao, Yuanjian
Liu, Huan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Sch Comp Sci & Technol, Qingdao 266580, Peoples R China