A light-weight deep learning framework for Low Light Image Enhancement

被引:1
|
作者
Zainab, Laraib [1 ,2 ]
Afzal, Hammad [1 ,3 ]
Mahmood, Khawir [1 ]
Arif, Omar [1 ,4 ]
机构
[1] Natl Univ Sci & Technol, Islamabad, Pakistan
[2] Natl Univ Modern Languages, Islamabad, Pakistan
[3] Univ Portsmouth, London, England
[4] Amer Univ Sharjah, Coll Engn, Sharjah, U Arab Emirates
关键词
Deep learning; Low Light Image Enhancement; Convolutional neural network; Lightweight architecture; Computer vision; Exposure fusion; NETWORK; REPRESENTATION; RETINEX; GAP;
D O I
10.1016/j.neucom.2024.129236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision, deep learning-based methods for improving low-light images have gained popularity. The proposed lightweight end-to-end deep neural network architecture is designed by minimizing the number of trainable parameters while optimizing design choices for efficiency and ensuring fast inference time. The proposed architecture consists of denoising, enhancing, and fusion modules designed to enhance image visibility, and contrast and reduce noise while preserving content and color information. We used a modified convolutional neural network (CNN)-based framework for exposure fusion that is designed to identify and rectify hidden degradation within dimly light images and highly adaptive to diverse lighting conditions. However, after conducting quantitative experiments, we have found that the proposed method outperforms the state-of-the-art TTST by about 0.48 dB and EDiffSR by 1.48 dB. Our lightweight method accounts for 8.28% and 6.77% of the computational cost (FLOPs) of TTST and EDiffSR respectively, and requires just 1.91% and 1.35% of their trainable parameters additionally.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Continuous detail enhancement framework for low-light image enhancement☆
    Liu, Kang
    Xv, Zhihao
    Yang, Zhe
    Liu, Lian
    Li, Xinyu
    Hu, Xiaopeng
    DISPLAYS, 2025, 88
  • [2] Low-Light Image Enhancement: A Comparative Review and Prospects
    Kim, Wonjun
    IEEE ACCESS, 2022, 10 (84535-84557): : 84535 - 84557
  • [3] RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement
    Zhao, Zunjin
    Xiong, Bangshu
    Wang, Lei
    Ou, Qiaofeng
    Yu, Lei
    Kuang, Fa
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1076 - 1088
  • [4] Low-Light Image and Video Enhancement Using Deep Learning: A Survey
    Li, Chongyi
    Guo, Chunle
    Han, Linghao
    Jiang, Jun
    Cheng, Ming-Ming
    Gu, Jinwei
    Loy, Chen Change
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9396 - 9416
  • [5] Low-light image enhancement based on deep learning: a survey
    Wang, Yong
    Xie, Wenjie
    Liu, Hongqi
    OPTICAL ENGINEERING, 2022, 61 (04)
  • [6] Image Super-Resolution Using Light-Weight Deep Learning Methods
    Zhu, Honghui
    Jiang, Zhuqing
    Men, Aidong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2020,
  • [7] A comparative analysis of Deep Learning based approaches for Low-light Image Enhancement
    Parihar, Anil Singh
    Singhal, Shivam
    Nanduri, Srishti
    Raghav, Yash
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
  • [8] Deep decomposer and refiner for low-light image enhancement
    Vaish, Piyush
    Parihar, Anil Singh
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [9] A Survey of Deep Learning-Based Low-Light Image Enhancement
    Tian, Zhen
    Qu, Peixin
    Li, Jielin
    Sun, Yukun
    Li, Guohou
    Liang, Zheng
    Zhang, Weidong
    SENSORS, 2023, 23 (18)
  • [10] LiCENt: Low-Light Image Enhancement Using the Light Channel of HSL
    Garg, Atik
    Pan, Xin-Wen
    Dung, Lan-Rong
    IEEE ACCESS, 2022, 10 : 33547 - 33560