Abiotic stress is increasing, which needs dire attention to tackle this issue. Recently, microbial application emerged as a promising solution to mitigate adversities of abiotic stresses. Arbuscular mycorrhizal fungi (AMF) form a symbiotic association with plants, and it can counter the toxic impacts of salinity. Salinity stress induces oxidative, ionic, and osmotic stresses, which impair plant physiological, metabolic, and biochemical functioning, membrane stability, nutrients and water uptake, resulting in substantial growth and yield losses. AMF improves membrane stability, water uptake, and nutrients and decreases the production of reactive oxygen species. Moreover, AMF also improves photosynthetic efficiency, protects photosynthetic apparatus and gene expression, and maintains a better osmolyte and hormonal balance, leading to better plant performance in saline conditions. In addition, AMF also participates in gene expression involved in the extrusion of sodium (Na) to soil solution and potassium (K) acquisition. It also affects the expression of tonoplast aquaporins, which improve the water uptake and plant water status under saline conditions. Thus, we discussed the mechanisms induced by AMF to enhance salinity tolerance plants. Different research gaps that must be fulfilled in future studies are also discussed in the present review. The present review provides insights to improve crop production by using AMF under increasing intensity of salinity and climate change.