SALINITY STRESS IN PLANTS: CAN ARBUSCULAR MYCORRHIZAL FUNGI BE A PROMISING SOLUTION?

被引:0
|
作者
Yu, J. L. [1 ]
Al-khayri, J. M. [2 ]
机构
[1] Baicheng Normal Univ, Coll Life Sci, Baicheng 137000, Jilin, Peoples R China
[2] King Faisal Univ, Coll Agr & Food Sci, Dept Agr Biotechnol, Al Hasa 31982, Saudi Arabia
来源
APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH | 2024年
关键词
antioxidants; aquaporins; gene expression; nutrient uptake; photosynthesis; ALLEVIATES SALT STRESS; ANTIOXIDANT ENZYMES; EXOGENOUS APPLICATION; LIPID-PEROXIDATION; OXIDATIVE STRESS; GAS-EXCHANGE; L; SEEDLINGS; MAIZE PLANTS; WATER STATUS; TOLERANCE;
D O I
10.15666/aeer/2302_20352057
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Abiotic stress is increasing, which needs dire attention to tackle this issue. Recently, microbial application emerged as a promising solution to mitigate adversities of abiotic stresses. Arbuscular mycorrhizal fungi (AMF) form a symbiotic association with plants, and it can counter the toxic impacts of salinity. Salinity stress induces oxidative, ionic, and osmotic stresses, which impair plant physiological, metabolic, and biochemical functioning, membrane stability, nutrients and water uptake, resulting in substantial growth and yield losses. AMF improves membrane stability, water uptake, and nutrients and decreases the production of reactive oxygen species. Moreover, AMF also improves photosynthetic efficiency, protects photosynthetic apparatus and gene expression, and maintains a better osmolyte and hormonal balance, leading to better plant performance in saline conditions. In addition, AMF also participates in gene expression involved in the extrusion of sodium (Na) to soil solution and potassium (K) acquisition. It also affects the expression of tonoplast aquaporins, which improve the water uptake and plant water status under saline conditions. Thus, we discussed the mechanisms induced by AMF to enhance salinity tolerance plants. Different research gaps that must be fulfilled in future studies are also discussed in the present review. The present review provides insights to improve crop production by using AMF under increasing intensity of salinity and climate change.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm
    Alizadeh, Sevda
    Gharagoz, Syamak Fallahi
    Pourakbar, Latifeh
    Moghaddam, Sina Siavash
    Jamalomidi, Masoomeh
    RHIZOSPHERE, 2021, 19
  • [32] Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants
    Nguyen Hong Duc
    Csintalan, Zsolt
    Posta, Katalin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 132 : 297 - 307
  • [33] Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants
    Dhalaria, Rajni
    Kumar, Dinesh
    Kumar, Harsh
    Nepovimova, Eugenie
    Kuca, Kamil
    Torequl Islam, Muhammad
    Verma, Rachna
    AGRONOMY-BASEL, 2020, 10 (06):
  • [34] Stress amelioration response of glycine betaine and Arbuscular mycorrhizal fungi in sorghum under Cr toxicity
    Kumar, Praveen
    PLOS ONE, 2021, 16 (07):
  • [35] Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis
    Zong, Jianwei
    Zhang, Zhilong
    Huang, Peilu
    Yang, Yuhua
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [36] Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress
    Duran, P.
    Acuna, J. J.
    Armada, E.
    Lopez-Castillo, O. M.
    Cornejo, P.
    Mora, M. L.
    Azcon, R.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2016, 16 (01) : 211 - 225
  • [37] Can arbuscular mycorrhizal fungi mitigate drought stress in annual pasture legumes?
    Jongen, Marjan
    Albadran, Baraa
    Beyschlag, Wolfram
    Unger, Stephan
    PLANT AND SOIL, 2022, 472 (1-2) : 295 - 310
  • [38] A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress
    Chandrasekaran, Murugesan
    Boughattas, Sonia
    Hu, Shuijin
    Oh, Sang-Hyon
    Sa, Tongmin
    MYCORRHIZA, 2014, 24 (08) : 611 - 625
  • [39] Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity
    Estrada, Beatriz
    Aroca, Ricardo
    Miguel Barea, Jose
    Manuel Ruiz-Lozano, Juan
    PLANT SCIENCE, 2013, 201 : 42 - 51
  • [40] Influence of salinity on the development of the banana colonised by arbuscular mycorrhizal fungi
    Mascena de Almeida, Aldenia Mendes
    Freire Gomes, Vania Felipe
    Mendes Filho, Paulo Furtado
    de Lacerda, Claudivan Feitosa
    Freitas, Emanuel Dias
    REVISTA CIENCIA AGRONOMICA, 2016, 47 (03): : 421 - 428