SALINITY STRESS IN PLANTS: CAN ARBUSCULAR MYCORRHIZAL FUNGI BE A PROMISING SOLUTION?

被引:0
|
作者
Yu, J. L. [1 ]
Al-khayri, J. M. [2 ]
机构
[1] Baicheng Normal Univ, Coll Life Sci, Baicheng 137000, Jilin, Peoples R China
[2] King Faisal Univ, Coll Agr & Food Sci, Dept Agr Biotechnol, Al Hasa 31982, Saudi Arabia
来源
APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH | 2024年
关键词
antioxidants; aquaporins; gene expression; nutrient uptake; photosynthesis; ALLEVIATES SALT STRESS; ANTIOXIDANT ENZYMES; EXOGENOUS APPLICATION; LIPID-PEROXIDATION; OXIDATIVE STRESS; GAS-EXCHANGE; L; SEEDLINGS; MAIZE PLANTS; WATER STATUS; TOLERANCE;
D O I
10.15666/aeer/2302_20352057
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Abiotic stress is increasing, which needs dire attention to tackle this issue. Recently, microbial application emerged as a promising solution to mitigate adversities of abiotic stresses. Arbuscular mycorrhizal fungi (AMF) form a symbiotic association with plants, and it can counter the toxic impacts of salinity. Salinity stress induces oxidative, ionic, and osmotic stresses, which impair plant physiological, metabolic, and biochemical functioning, membrane stability, nutrients and water uptake, resulting in substantial growth and yield losses. AMF improves membrane stability, water uptake, and nutrients and decreases the production of reactive oxygen species. Moreover, AMF also improves photosynthetic efficiency, protects photosynthetic apparatus and gene expression, and maintains a better osmolyte and hormonal balance, leading to better plant performance in saline conditions. In addition, AMF also participates in gene expression involved in the extrusion of sodium (Na) to soil solution and potassium (K) acquisition. It also affects the expression of tonoplast aquaporins, which improve the water uptake and plant water status under saline conditions. Thus, we discussed the mechanisms induced by AMF to enhance salinity tolerance plants. Different research gaps that must be fulfilled in future studies are also discussed in the present review. The present review provides insights to improve crop production by using AMF under increasing intensity of salinity and climate change.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Arbuscular mycorrhizal fungi and salinity stress mitigation in plants
    Boorboori, Mohammad Reza
    Lackoova, Lenka
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [2] Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants
    Bahadur, Ali
    Batool, Asfa
    Nasir, Fahad
    Jiang, Shengjin
    Qin Mingsen
    Zhang, Qi
    Pan, Jianbin
    Liu, Yongjun
    Feng, Huyuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (17)
  • [3] Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges
    Evelin, Heikham
    Devi, Thokchom Sarda
    Gupta, Samta
    Kapoor, Rupam
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [4] Arbuscular mycorrhizal fungi for salinity stress: Anti-stress role and mechanisms
    Dar, Muzafar H.
    Razvi, Syed M.
    Singh, Narender
    Mushtaq, Ahmad
    Dar, Shahnawaz
    Hussain, Shabber
    PEDOSPHERE, 2023, 33 (01) : 212 - 224
  • [5] Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat
    Tofighi, C.
    Khavari-Nejad, R. A.
    Najafi, F.
    Razavi, K.
    Rejali, F.
    JOURNAL OF PLANT NUTRITION, 2017, 40 (08) : 1091 - 1098
  • [6] Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants
    Ahammed, Golam Jalal
    Shamsy, Rubya
    Liu, Airong
    Chen, Shuangchen
    ENVIRONMENTAL POLLUTION, 2023, 327
  • [7] Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity
    Talaat, Neveen B.
    Shawky, Bahaa T.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2014, 98 : 20 - 31
  • [8] Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants
    Hajiboland, Roghieh
    Aliasgharzadeh, Naser
    Laiegh, Shirin Farsad
    Poschenrieder, Charlotte
    PLANT AND SOIL, 2010, 331 (1-2) : 313 - 327
  • [9] Elemental composition of arbuscular mycorrhizal fungi at high salinity
    Hammer, Edith C.
    Nasr, Hafedh
    Pallon, Jan
    Olsson, Pal Axel
    Wallander, Hakan
    MYCORRHIZA, 2011, 21 (02) : 117 - 129
  • [10] Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity
    Qiu, Ya-Jing
    Zhang, Nai-Li
    Zhang, Lin-Lin
    Zhang, Xin-Lei
    Wu, Ai-Ping
    Huang, Ju-Ying
    Yu, Shu-Quan
    Wang, Yan-Hong
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2020, 112