Solving Pell's equation using suborbital graphs

被引:0
|
作者
Koroglu, Tuncay [1 ]
机构
[1] Karadeniz Tech Univ, Trabzon, Turkiye
关键词
Modular group action; Suborbital graph; Pell's equation; CONGRUENCE SUBGROUPS;
D O I
10.2298/FIL2419863K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a connection between suborbital graphs and integer solutions of Pell's equation of the form x(2) - Ny(2) = 1, where N is a non-square positive integer. We derive new suborbital graphs generated by the action of some specific modular subgroups on extended rational numbers. By using these graphs, we obtain a new combinatorial notation for the integer solutions of Pell's equation and some results on the vertices of the graphs studied here.
引用
收藏
页码:6863 / 6870
页数:8
相关论文
共 36 条
  • [31] A Combinatorial Proof of Simplified Kollar's Theorem on Pell's Equations
    Chilikov, A. A.
    Efremov, I.
    Zveryk, V.
    Khomich, N.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 867 - 871
  • [32] Generalized Pell's equations and Weber's class number problem
    Yoshizaki, Hyuga
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 373 - 391
  • [33] Novel Performant Primality Test on a Pell’s CubicNovel Performant Primality Test on a Pell’s CubicL. Di Domenico and N. Murru
    Luca Di Domenico
    Nadir Murru
    Mediterranean Journal of Mathematics, 2025, 22 (3)
  • [34] A Combinatorial Proof of Simplified Kollár’s Theorem on Pell’s Equations
    A. A. Chilikov
    I. Efremov
    V. Zveryk
    N. Khomich
    Mathematical Notes, 2020, 107 : 867 - 871
  • [35] GENERALIZED CONTINUED FRACTIONS IN REAL QUADRATIC FIELDS AND PELL'S EQUATIONS
    Bracher, M.
    Hetz, S.
    Levitt, B.
    Ontiveros, M.
    Sewell, A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 22 (02): : 211 - 223
  • [36] Elliptic elements of Γ∧0,n(N), act on DOUBLE-STRUCK CAPITAL Q∧(N) and suborbital graphs of Γ∧0,n(N) on the group DOUBLE-STRUCK CAPITAL Q∧(N)
    Unluyol, Erdal
    Buyukkaragoz, Aziz
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 566 - 576