Derivation of Kinetic Parameters and Lignocellulosic Composition From Thermogram of Biomass Pyrolysis Using Convolutional Neural Network

被引:1
作者
Kim, Heeyoon [1 ]
Jo, Hyunbin [1 ,2 ]
Ryu, Changkook [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea
[2] Korea Inst Energy Res KIER, Clean Fuel Res Lab, Daejeon 34129, South Korea
关键词
biomass; convolutional neural network; denoising autoencoder; kinetics; pyrolysis; three-parallel-reaction model; ACTIVATION-ENERGY MODEL; THERMAL-DECOMPOSITION; CO-PYROLYSIS; CELLULOSE; BEHAVIOR;
D O I
10.1155/er/6184508
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel method employing a 1-dimensional convolutional neural network (1D-CNN) has been developed to deduce kinetic parameters for the three-parallel-reaction model (TPRM) and the lignocellulosic composition from the thermogram of biomass pyrolysis. This model was trained on differential thermogram (DTG) datasets created at various heating rates with rate constants randomly selected from expansive ranges. Furthermore, to enhance prediction accuracy, a denoising autoencoder (DAE) was crafted to eliminate noise from experimental data effectively. The 1D-CNN regression model forecasted kinetic parameters with mean errors of 1.52% for trained heating rates and 1.39%-3.19% for other heating rates. When tested on four biomass samples, the model precisely mimicked the DTG curves with R2 values ranging from 0.9956 to 0.9994. Relative to conventional numerical methods, this model delivers comparable prediction accuracy but through a significantly streamlined and expedited process. Enhancements are needed to broaden the model's applicability across various kinetic models and materials.
引用
收藏
页数:14
相关论文
共 35 条
[1]   How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme [J].
Anca-Couce, Andres ;
Berger, Anka ;
Zobel, Nico .
FUEL, 2014, 123 :230-240
[2]   A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application [J].
Cepeliogullar, Ozge ;
Mutlu, Ilhan ;
Yaman, Serdar ;
Haykiri-Acma, Hanzade .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 122 :84-94
[3]   Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis [J].
Chen, Zhihua ;
Hu, Mian ;
Zhu, Xiaolei ;
Guo, Dabin ;
Liu, Shiming ;
Hu, Zhiquan ;
Xiao, Bo ;
Wang, Jingbo ;
Laghari, Mahmood .
BIORESOURCE TECHNOLOGY, 2015, 192 :441-450
[4]   Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders [J].
Chiang, Hsin-Tien ;
Hsieh, Yi-Yen ;
Fu, Szu-Wei ;
Hung, Kuo-Hsuan ;
Tsao, Yu ;
Chien, Shao-Yi .
IEEE ACCESS, 2019, 7 :60806-60813
[5]   Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend [J].
Coimbra, Ricardo N. ;
Escapa, Carla ;
Otero, Marta .
ENERGIES, 2019, 12 (15)
[6]   Drag-induced apparent mass gain in thermogravimetry [J].
Crewe, R. J. ;
Staggs, J. E. J. ;
Williams, P. T. .
POLYMER DEGRADATION AND STABILITY, 2007, 92 (11) :2070-2075
[7]   Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior [J].
De Filippis, Paolo ;
de Caprariis, Benedetta ;
Scarsella, Marco ;
Verdone, Nicola .
ENERGIES, 2015, 8 (03) :1730-1744
[8]   A comprehensive review on the pyrolysis of lignocellulosic biomass [J].
Dhyani, Vaibhav ;
Bhaskar, Thallada .
RENEWABLE ENERGY, 2018, 129 :695-716
[9]   Prediction of Pyrolysis Kinetics of Biomass: New Insights from Artificial Intelligence-Based Modeling [J].
Dong, Lei ;
Wang, RanRan ;
Liu, PeiDe ;
Sarvazizi, Saeed .
INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2022, 2022
[10]   Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method [J].
Hu, Mian ;
Chen, Zhihua ;
Wang, Shengkai ;
Guo, Dabin ;
Ma, Caifeng ;
Zhou, Yan ;
Chen, Jian ;
Laghari, Mahmood ;
Fazal, Saima ;
Xiao, Bo ;
Zhang, Beiping ;
Ma, Shu .
ENERGY CONVERSION AND MANAGEMENT, 2016, 118 :1-11